BELCK

Beck IPC GabH

IPC@Chip Documentation index - BIOS V1.02 Beta

@Chip-RTOS overview
Scaled @Chip-RTOS versions
IPC@Chip startup initialization

BIOS: Interrupts for several PC services

CGl: Software interface to CGlI

COMMAND: Description of the command processor.
CONFIG: System configuration based on CHIP.INI file.
DOS: Interrupt 0x21 functions

External Disk Drive B: Interface Definition

FOSSIL: Interface to the serial ports.

Hardware API: Including PFE and HAL

I12C: Interface definition for the I12C Bus Interface
Ethernet: Packet Driver Interface

PPP Interface: How to configure the SC12 PPP server.
RTOS API: Interface definition for RTOS interface.
TCP/IP API: Interface definition for the TCP/IP sockets.

TFTP server: Short description of the SC12 TFTP server.

Security notes

Programming notes

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

@CHIP-RTOS Software overview

IPC@Chip Documentation Index

RTOS
. 35 Tasks
. 15 Timers
60 Semaphores
10 Message exchanges
. 2 Event groups

RTOS Filesystem for
Internal ramdisk

. Internal flashdiskdrive
External drive

TCP/IP Stack
. TCP
. UDP
. ARP
ICMP
. Socket interface
. 64 Sockets
. 3 device interfaces
- Ethernet
- PPP server
- PPP client

TCP/IP applications
. HTTP Webserver
. FTP server
. Telnet server
. TFTP server
. DHCP client
UDP config server for @CHIP-
RTOS upgrade

DOS-EXE Loader

Up to 12 DOS application
programms can run as tasks of the
RTOS

DOS-like command shell

User DOS applications, executed as tasks of the RTOS

TFTP
Senver

OHCP FTP HTTP | |Tehnet
Client SEMVET Web SEMNVEr
SEMVEr

Sockets Application interface

TCP/P Stack
ARP. ICMP, TGP, UDP

Ethernet Driver

PPF client

PPP server

DOS
EXE
Loader

Int21h
Int 16h

Int 10h

Command
5 e |

@Chip-RTOS architecture

Application Programmer Interface

. RTOS

. TCP/IP socketinterface

. DOS interrupt 21h and others

. Webserver CGI
Hardware

. 12C

. Serial devices (Fossil interface)
Ethernet Packet driver

. SpeC|aI @CHIP-RTOS services

DOS application examples
RTOS API examples
. TCP/IP APl examples

- FTP client
- HTTP client
- Other TCP/IP examples

http://www.bcl.de/

. Supports a subset of DOS
commands and @CHIP-RTOS
specific commands via Telnet or
serial devices

Packet driver interface
. Accessing the ethernet device
without TCP/IP

Serial filetransfer via xmodem

Scalable @CHIP-RTOS

. Support of 6 different versions,
including various @CHIP RTOS
features

@CHIP-RTOS Upgrade via
Ethernet/UDP or serial
Bootstraploader

Webserver CGIl examples

External IDE disk driver

Hardware API examples

I12C examples

Fossil examples

API examples written in Turbo Pascal

. API C-Libraries

more

End of document

BELCK

Beck IPC GmbH

Scalable BIOS Versions of the IPC@Chip

IPC@Chip Documentation Index

. SC12Vxxxx_TINY.hex
.SC12Vxxxx_SMALL.hex

OO0k WNPE

.SC12Vxxxx_MEDIUM.hex

. SC12Vxxxx_LARGE.hex
.SC12Vxxxx_MEDIUM_PPP.hex
. SC12Vxxxx_LARGE_PPP.hex

Tiny

Small

Medium

Large

RTOS-Kernel

Serial
RTOS-Filesystem
Ext Disk
XMODEM-Protocol
TCPIP-Ethernetdriver
Ethernet Packet-Interface
TCP-IP

12C

Hardware API

CFG server
Webserver

FTP Server

Telnet Server

PPP only with Medium & Large

PPP client & server

X X X X X X X

X X X X X X X X X X X

X

X X X X X X X X X X X X X X

X

TFTP server is not a part of the 6 official BIOS versions, but the customers could order a BIOS version which

includes this feature.

Each BIOS version with TCPIP protocol stack includes a DHCP client. It is possible to order a BIOS version

without DHCP.

The IPC@Chip offers 512kB RAM and 512kB Flash disk.

http://www.bcl.de/

Here are the sizes of available RAM and flash disk for the different versions of BIOS 1.02 Beta

Available RAM(kBytes) Available Flash memory(kBytes)

Tiny 451 388

Medium 348 250

Large 322 227

End of document

BELCK

Beck IPC GabH

IPC@Chip Initialization - BIOS V1.02 Beta

IPC@Chip Documentation Index

Programmable 1/O Pins

At turn-on the IPC@Chip 1/O pins are configured as follows:

Pin1:
Pin2:
Pin3:
Pin4:
Pin5:
Pin6:
Pin7:

RXDO/PIO7 = RXDO

TXDO/PIO8 = TXDO

CTSO0/PIO9 = Input pullup
RTSO0/P1010= Input pullup
TXD1/PI011=TXD1

RXD1/P1012= RXD1
TMROUTO/INTO/PIO13 = Input pulldown

Pinl17: RESET/PFAIL/LILED = Input

Pin24: ALE/PCSO0 = Output, value 1

Pin25: CTS1/PCS2/PIO6/INT2 = Input pullup

Pin26: RTS1/PCS3/PIO5/INT4 = Input pullup

Pin27: PCS1/PIO4/TMRINO/AO = Input pullup

Pin28: PCS5/PIO3/TMROUT1/TMRIN1/A1= Input pullup
Pin29: PCS6/P102/A2= Input pullup

Pin30: I2CDAT/INT5/PIO1 = Input

Pin31: I2CCLK/INT6/PIOO0 = Input

Back to main index page

End of document

http://www.bcl.de/

BECK

Beck IPC GmbH

BIOS Interface Documentation - BIOS V1.02 Beta

IPC@Chip Documentation Index

BIOS Interrupts

Here are the interface definition for the BIOS Interrupts

The system BIOS in a regular PC offers several services. Only a subset is required for embedded systems. This subset is described
here.

Other functions not found in a regular PC systems have been added for your convenience.
Functions that are not supported, are handled in a default handler, issuing a message to the console.

New in version 1.02B: Enable/Disable Filesharing

New in version 1.02B: Install System Server Connetion Handler functions
New in version 1.02B: Install user stdio handler functions

New in version 1.02B: Get stdin/stdout settings

New in version 1.02B: Set stdin/stdout channel

New in version 1.02B: Set a memory gap between the loaded DOS programs
New in version 1.02B: Detect ethernet link state

New in version 1.02B: Fast FindFirst/Next

New in version 1.02B: Get the IPC@Chip device names

New in version 1.02B: Suspend/Resume System Servers

New in version 1.01B: Modified BIOS feature function

New in version 1.01B: Set the Stdio Focuskey

New in version 1.00: Insert an entry at chip.ini

New in version 1.00: Find an entry at chip.ini

. Interrupt Ox1A_function_0x00:_Get clock count since midnight
. Interrupt Ox11 function x: Get equipment list
. Interrupt Ox10 function_0x00:_ Get char from standard input
. Interrupt 0Ox10 function 0x01: Check if a character is available from std in
. Interrupt Ox10 function_0x08: Read character at cursor
. Interrupt 0Ox10 function OxOE: Teletype output
. Interrupt Ox10 function_OxOf: Get video state
. Interrupt 0x10 function 0x12: Video subsystem configuration
. Interrupt Ox16 function_0x00:_ Get char from standard input
. Interrupt 0Ox16 function 0x01: Check if a character is available from std in
. Interrupt OxAO _function_0x00:_ Get serial number
. Interrupt OxAO function 0x01: Get IP address of the Ethernet interface
. Interrupt OxAO_function_0x02: Set IP address of the Ethernet interface
. Interrupt OXAO function 0x03: Get IP subnet mask of the Ethernet interface
. Interrupt OxAO_function_0x04:_ Set IP subnet mask
. Interrupt OxAO function 0x05: Get IP gateway
. Interrupt OxAO_function_0x06:_Set IP default gateway
. Interrupt OxAO function 0x07: Execute a command shell command
. Interrupt OXAO function 0x08: Set timer 0x1C's interval
Interrupt_ OxAOQ_function_0x09: Set timer interrupt OXAF's interval

http://www.bcl.de/

. Interrupt OxAO function_0x11: Set STDIO focus

. Interrupt OXAO function 0x12: Get bootstrap version number

. Interrupt OxAO function_0x13: Get BIOS version number

. Interrupt OXAO function 0x14: Set batch file execution mode.

. Interrupt OxAO_function_0x15: Allow immediate further batch file execution in BATCHMODE 1.
. Interrupt OxXAO function 0x16: Get information about the BIOS features

. Interrupt OxAO_function_0x17: Get MAC address of the Ethernet interface

. Interrupt OxAO function 0x18: Power save

. Interrupt OxAO function_0x19: Change level for configuration server.

. Interrupt OXAO function_0x20: Install a user fatal error handler

. Interrupt OxAO function_0x21: Rebooting the SC12

. Interrupt OXAO function 0x22: Get version string

. Interrupt OxAO_function_0x23:_Insert an entry at chip.ini

. Interrupt OxAO function_0x24: Find an entry at chip.ini

. Interrupt OxAO function_0x25: Set the Stdio Focuskey

. Interrupt OXAO function_0x26: Get the IPC@Chip device names

. Interrupt OxXAO function 0x27: Suspend/Resume System Servers

. Interrupt OXAO function_0x28: Fast Findfirst

. Interrupt OxAO function 0x29: Fast Findnext

. Interrupt OXAO function 0x30: Fast Finddone

. Interrupt OXAO function 0x31: Detect ethernet link state

. Interrupt OxAO function_0x32: Set a memory gap between the loaded DOS programs
. Interrupt OXAO function 0x33: Set stdin/stdout channel

. Interrupt OxAO function_0x34: Get stdin/stdout settings

. Interrupt OxXAO function 0x35: Install specific user stdio handlers

. Interrupt OxAO function_0x36: Install a System Server Connection Handler function
. Interrupt OxAO function 0x37: Enable/Disable Filesharing

. Interrupt OxAO function_0x38: Get Filename by Handle

Interrupt Ox1A service 0x00: Get clock count since midnight

Returns the number of clock ticks since midnight.
The frequency of the clock is 18.2 Hz (e.g. 54.945 ms per tick).

Parameters

AH
Must be 0.

Return Value

Returns the 32 bit tick count in CX (high word) and DX (low word)
If an overflow occurred since the last call, AX is set to 1.

Comments

Please note that the overflow indication returned in register AX can not be relied upon if several tasks are using this service.

Top of list
Index page

Interrupt Ox11 service x: Get equipment list

Get the bios equipment list

Return Value

Returns the equipment list in AX, currently Ox013C. This bit field indicates:

bit8: 1:NoDMA

bit 6-7: 00: One floppy
bit 4-5: 11: 80x25 mono
bit 2-3: 11: system ram
bit1: 0:no 8087

bit0: 0:no disk drives

Comments

This function is needed to make sure an application finds no 8087 coprocessor so it can load a floating-point emulator.

Top of list
Index page

Interrupt Ox10 service 0x00: Get char from standard input
Get a character from std in, wait if none available
Parameters

AH
Must be 0.

Return Value

Returns input character in AL
Return at DX the source stdin channel: 1: EXT , 2: COM, 4: Telnet

Comments

Please note that AH does not contain the scan code, but is always 0.

Top of list
Index page

Interrupt Ox10 service 0x01: Check if a character is available from std in
Check if a character is available from standard input
Parameters

AH
Must be 1.

Return Value
AX=1 if a character is available, AX=0 and zero-flag is cleared if no character is available.

Comments

Please note that AH does not contain the scan code, but is instead always 0.

Top of list
Index page

Interrupt Ox10 service 0x08: Read character at cursor
Read character at cursor position, always returns 0
Parameters

AH
Must be 0x08

Return Value

AX = 0. (This function exists only for PC compatibility.)

Top of list
Index page

Interrupt Ox10 service OXOE: Teletype output
Write a character to the standard output.
Parameters

AH
Must be Ox0E

AL
Character to write

Return Value
Returns nothing.
Comments

This call returns immediately after space becomes available in the transmit ring buffer.
(The data transfer from the transmit ring buffer to the hardware transmitter is interrupt driven.)

Top of list
Index page

Interrupt 0x10 service OxOf: Get video state
Get video state
Parameters

AH
must be OxOF

Return Value

number of screen columns, 80 in AH
mode currently set, 1 in AL
mode currently display page ,0 in BH

Top of list
Index page

Interrupt Ox10 service 0x12: Video subsystem configuration
Video subsystem configuration
Parameters

AH
must be 0x12

Return Value

AX=0x0012
BX=0
CX=0

Top of list
Index page

Interrupt Ox16 service 0x00: Get char from standard input
Get a character from std in, wait if none available
Parameters

AH
Must be 0.

Return Value

Returns character in AL
Returns at DX the source stdin channel of the character: 1: EXT , 2: COM , 4: Telnet

Comments

Please note that AH does not contain the scan code, but is always O.

Top of list
Index page

Interrupt Ox16 service 0x01l: Check if a character is available from std in

Check if a character is available from standard input

Parameters

AH
Must be 1.

Return Value

AX=1 if a character is available, AX=0 and zero-flag is cleared if no character is available.

Comments

Please note that AH does not contain the scan code, but is always O.

Top of list
Index page

Interrupt OXAO service 0x00: Get serial number
Get the serial number of the CPU device
Parameters

AH
Must be 0.

Return Value
AX=low word, BX=high word.
Comments

The serial number is a 24 bit value.

Top of list
Index page

Interrupt OXAO service 0x01: Get IP address of the Ethernet interface
Get the IP address as a string.
Parameters

AH
Must be 1.

ES:DX
Pointer to a 16 byte memory area where the IP address is to be stored as a null terminated string.

Related Topics

Ethernet |P address initial value

Top of list

Index page

Interrupt OXAO service 0x02: Set IP address of the Ethernet interface
Set the Ethernet interface's IP address based on the supplied string.
Parameters

AH
Must be 2.

ES:DX
Pointer to a 16 byte memory area where the IP address is stored as a null terminated string.

Comments

A new IP configuration must be activated by calling the i pet h command
or by calling the TCP/IP API interrupt OXAC service 0x71 (RECONFI G_ETHERNET).

Related Topics

TCP/IP API RECONFIG_ETHERNET service

Ethernet IP address initial value

IP command line

Important:

This API function writes to chip.ini and is not reentrant.

Don't use in different tasks or in combination with BIOS commands,
which are writing to chip.ini, e.9g. DHCP. Avoid race conditions with
any other API call, which writes or read also to/from chip.ini

e.g. service 0x23

Top of list
Index page

Interrupt OXAO service 0x03: Get IP subnet mask of the Ethernet interface
Get the IP subnet mask as a string.
Parameters

AH
Must be 3.

ES:DX
Pointer to a 16 byte memory area where the IP subnet mask is to be stored as a null terminated string.

Related Topics

Ethernet IP subnet mask initial value

Top of list
Index page

Interrupt OXAO service 0x04: Set IP subnet mask

Set the IP subnet mask to the string supplied
Parameters

AH
Must be 4.

ES:DX
Pointer to a 16 byte memory area where the IP subnet mask is stored as a null terminated string.

Comments

A new IP configuration must be activated by calling the i pet h command
or by calling the TCP/IP API interrupt OXAC service 0x71 (RECONFI G_ETHERNET).

Related Topics

Ethernet |P subnet mask initial value

NETMASK command line

TCP/IP API documentation

Important:

This API function writes to chip.ini and is not reentrant.

Don't use in different tasks or in combination with BIOS commands,
which are writing to chip.ini, e.g. DHCP. Avoid race conditions with
any other API call, which writes or read also to/from chip.ini

e.g. service 0x23

Top of list
Index page

Interrupt OXAO service 0x05: Get IP gateway
Get the IP gateway as a string.
Parameters

AH
Must be 5.

ES:DX
Pointer to a 16 byte memory area where the IP gateway is to be stored as a null terminated string.

Top of list
Index page

Interrupt OXAO service 0x06: Set IP default gateway
Set the IP gateway to the string supplied
Parameters

AH

Must be 6.

ES:DX
Pointer to a 16 byte memory area where the IP gateway is stored as a null terminated string.

Comments

A new IP configuration must be activated by calling the i pet h command
or by calling the TCP/IP API interrupt OXAC service 0x71 (RECONFI G_ETHERNET).

Important:

This API function writes to chip.ini and is not reentrant.

Don't use in different tasks or in combination with BIOS commands,

which are writing to chip.ini, e.g. DHCP. Avoid race conditions with

any other API call, which writes or read also to/from chip.ini

e.g. service 0x23 The TCPIP stack of the IPC@Chip supports only one valid default gateway for all device interfaces:

Ethernet, pppserver and pppclient.

The i pcf g command shows the current default gateway.

Related Topics

Ethernet default gateway initialization
GATEWAY command line
ADD_DEFAULT_GATEWAY API function
PPP server default gateway initialization

Top of list
Index page

Interrupt OXAO service 0x07: Execute a command shell command
Passes a command string to the command interpreter.
Parameters

AH
Must be 7.

ES:DX
Pointer to a null terminated command line.

Comments

Internal commands are processed in the current task, external commands (.exe files) are loaded and executed in a new task.

Top of list
Index page

Interrupt OXAO service 0x08: Set timer 0x1C's interval

Define the interval in milliseconds that timer interrupt Ox1C will use.

Parameters

AH

Must be 0x08.
BX
Interval in milliseconds
Comments
Use set vect (0x1c, your _routi ne) to change the interrupt vector.
Define your routine as:
void interrupt my_function(void)
You must restore the old timer interrupt vector before ending the program.
Your interrupt routine must be as short as possible without any waiting or endless loops.
Avoid the usage of large CLib functions like pri nt f .
Top of list
Index page

Interrupt OXAO service 0x09: Set timer interrupt OXAF's interval

Define the interval in milliseconds that timer OXAF will use

Parameters
AH

Must be 0x09.
BX

Interval in milliseconds

Comments

Use set vect (OxAF, your _r out i ne) to change the interrupt vector.
Define your routine as:
void interrupt my_function(void)
You must restore the old timer interrupt vector before ending the program.
Your interrupt routine must be as short as possible without any waiting or endless loops.
Avoid the usage of large CLib functions like pri ntf .

Top of list
Index page

Interrupt OXAO service 0x11: Set STDIO focus
Set the focus of STDIO to either console, application or both
Parameters

AH
Must be 0x11

AL
1: command shell (console), 2: Application, 3: both

Comments

If your application requires input from the user, you should set the focus to the application.
You should take care that only one application requests input from STDIO.
The user can change the focus by using the focus hot key (default Ctrl-F).
Changing the focus clears the serial input and output queues immediately.

Important :
All buffered incoming and outgoing characters in the internal serial
send and receive queues are lost after this call.

Related Topics

Focus key definition

Top of list
Index page

Interrupt OXAO service 0x12: Get bootstrap version number
Get the version number of the bootstrap loader.
Parameters

AH
Must be 0x12

Return Value
AX=version number, AH is major version, AL is minor version.
Comments

Example:
If the function returns 0x0100 in AX, this means that you have version 1.00.

Top of list
Index page

Interrupt OXAO service 0x13: Get BIOS version number
Get the version number of the BIOS.
Parameters

AH
Must be 0x13

Return Value
AX=version number, AH is major version, AL is minor version.
Comments

Example:
If the function returns 0x0043 in AX, this means that you have version 0.67.

Top of list
Index page

Interrupt OXAO service 0x14: Set batch file execution mode.

Sets the batch file execution mode of DOS programs for either concurrent or sequential execution.
See BATCHMODE initialization documentation for details.

Parameters

AH
Must be 0x14

AL
AL =0: (Selects default BATCHMODE=0, = concurrent)

AL =1: (Sets BATCHMODE=1, = sequential)

BX
BX =0: Disable the max. delayed execution timeout of DOS programs

BX =1: Enable the max. delayed execution timeout of DOS programs at a batchfile, if BATCHMODE=1
Return Value

returns nothing
Comments

Important:
If BATCHMODE=1take care that every program in your batch file which has a successor
program either exits (int21h 0x4C)or terminates resident with int21h 0x31.
A program which runs forever should call from the main function BIOS Interrupt
0xAOQ Service 0x15, which immediately enables the further batch file sequencing.
By default the maximum delay time for execution of the next listed program in the batch file is 15 seconds.
If BX is set to 0, the successor program at a batch file waits forever for execution, if the predecessor program
not finishes or calls 0XAQ Service 0x15

Related Topics

Initial batch mode configuration
BATCHMODE command

Top of list
Index page

Interrupt OXAO service 0x15: Allow immediate further batch file execution in BATCHMODE 1.

This call allows the next program listed in a batch file to start execution.
This is implemented by waking up a batch file execution task which dispatches any
subsequent program listed in the batch file.

Parameters

AH
Must be 0x15

Return Value
returns nothing
Related Topics

Initial batch mode configuration
Run-time batch mode selection

Top of list
Index page

Interrupt OXAO service 0x16: Get information about the BIOS features

Get information about running servers, interfaces and features of the BIOS
Parameters

AH
0x16

Return Value

Bits of AX, BX and DX indicate the services or devices available, coded as:
Bit=0: service or device is not available.
Bit=1: service or device is available.

AX:
Bit 0: Ethernet device for TCPIP
Bit 1: PPP server
Bit 2: PPP client
Bit 3: Web server
Bit 4: Telnet server
Bit 5: FTP server
Bit 6: TFTP server
Bit 7: DHCP client

BX:
Bit 0: SNMP MIB variables support (see TCPIP APl service 0x71)
Bit 1: UDP config server
Bit 2: Ping client (see TCPIP APl service 0x75)

DX:
Bit 0: 12C-Bus API
Bit 1: Hardware API
Bit 2: RTOS API
Bit 3: Packet driver interface for ethernet
Bit 4. Serial XMODEM filetransfer
Bit 5: External disk interface

Developer Notes

Since BIOS version 1.01 we also use the BX register for returning information about the BIOS features.

Top of list
Index page

Interrupt OXAO service 0x17: Get MAC address of the Ethernet interface
Get the MAC address as a 6 Byte array.
Parameters

AH
Must be 0x17.

ES:DX
Pointer to a 6 byte memory area where the MAC address is to be stored.

Top of list
Index page

Interrupt OXAO service 0x18: Power save

Slows down the internal timer for the RTOS and puts the CPU in a halt mode until the next interrupt occurs. Please note that
the internal time/date will be affected.

Parameters

AH
Must be 0x18.

Comments

Call this function when your program is in idle state.
Power savings are marginal since we use a DRAM. Please note that power consumption may differ slightly when the date
code of the IPC@Chip is changed.

Top of list
Index page

Interrupt OXAO service 0x19: Change level for configuration server.

Change the supported level for the configuration server. For a description of the possible levels, please refer to config.htm
document.

Parameters

AH
Must be 0x19.

BX
The supported level.

Comments

Please note that if the level defined in the chi p. i ni is 0 (zero), the configuration server task is not started and changing the

supported level does not have any effect. To avoid this, use a unlisted support level such as 0x1000 in the chi p. i ni .
The entry in the chi p. i ni file is not changed by this call.

Top of list
Index page

Interrupt OXAO service 0x20: Install a user fatal error handler

Install a user fatal error function. This function will be called at fatal errors
at execution time. (for further details see comment)

Parameters

AH
Must be 0x20.

ES:DI
Address of the user error handler function

Comments

The user should be able to call an error handler function, if a fatal error occurs at his application or inside of the SC12 BIOS.

This mechanism will (of course) fail if the code of the user error handler is itself overwritten (corrupt).

Function must be be from type huge _pascal with a parameter int errorcode (see the following example).

The SC12 BIOS calls the user error with handler an error code, for detecting the cause of the occured error inside of the user

error handler function.

If an user user error handler is defined, it will be called from the SC12 BIOS with following errorcodes:
1: Invalid processor opcode (usually caused by corrupted memory), the calling task is suspended

2: Fatal kernel error (usually caused by corrupted memory or a taskstack overflow)with errorcode 2

3: Fatal internal TCPIP error, calling task is supended

4: TCPIP stack reaches memory limit

5. TCPIP memory allocation error

In all cases we recommend a reboot with BIOSint OXAO0 0x21 (see below).

Important: Do not use any message printing inside your errorhandler if errorcode is 3 or 4,
because if telnet is part of your stdio, your exit handler hangs inside of the print call.

[l exanpl e for Borland C
voi d huge _pascal user_error_handl er(int errorcode)
{
union REGS inregs;
union REGS outregs;

/le.g. resetting outputs
out port b(0x600, 0x00) ;

/lrebooting the SC12
i nregs. h.ah = 0x21;
i nt 86(0xAO0, & nregs, &out r egs) ;
}

/[linstall the function at main
i nregs. h. ah=0x20;
sregs. es =FP_SE(user _error_handl er);
i nregs. x. di =FP_OFF(user _error _handl er);
i nt 86x(0xA0, & nregs, &outregs, &sregs) ;

Top of list

Index page

Interrupt OXAO service 0x21: Rebooting the SC12
This function works in the same way than the shell command reboot
Parameters

AH
0x21

Return Value

Reboot: No return from this function

Top of list
Index page

Interrupt OXAO service 0x22: Get version string
Copies the BIOS version information in to a text buffer. The string is null terminated
Parameters

AH
Must be 0x22

CX

Buffer length, including space for null terminator
ES

Segment of memory buffer for the string
DI

Offset of memory buffer for the string
Related Topics

VER VER command

Top of list
Index page

Interrupt OXAO service 0x23: Insert an entry at chip.ini

The functions 0x23 and 0x24 allows the user to modify/place and find/read
own chip.ini entries.

Parameters

AH
Must be 0x23.

BX:SI

Pointer to section string (max. 40 chars)

ES:DI
Pointer to item name (max. 40 chars)

DS:DX
Pointer to item text (max. 40 chars)

Return Value

AX=0 success , AX=-1 invalid string length

Comments

Important: The API functions 0x23 and 0x24 are not reentrant.
Don't use in different tasks or in combination with BIOS commands,
which are writing to chip.ini e.g. DHCP. Avoid race conditions with
any other API call, which writes or read also to/from chip.ini

e.g. service 0x02

Example(tested with Borland C/C++ 5.02:

int iniPutString(char *sectionNanme, char *itenmNane, char *text)
{

union REGS inregs;

union REGS outregs;

struct SREGS sregs;

i nregs. h.ah = 0x23;

i nregs. x. bx = FP_SEQ secti onNane) ;
i nregs. x.si = FP_OFF(sectionNane);
sregs. es = FP_SEQi t emNane) ;
inregs.x.di = FP_OFF(itemNane);
sregs. ds = FP_SEQtext);

i nregs. x. dx FP_OFF(text);
i nt 86x(0xA0, & nregs, &utregs, &sregs) ;
return outregs. X. ax;

/lCall of this function:

ini PutString("M_SECTION', "MY_ITEM', "VALUE TEXT");
//and produces the following chip.ini entry

[MY_SECTI ON|

MY_| TEM=VALUE_TEXT

<nl >

Top of list
Index page

Interrupt OXAO service 0x24: Find an entry at chip.ini
Find a entry at chip.ini
Parameters

AH
Must be 0x24.

CX
Maxlen for target string.

BX:SI
Pointer to section string

ES:DI
Pointer to item name

DS:DX
Pointer to target

Return Value

AX=0: Entry not found
else Success: pointer at DS:DX contains the found string AX contains length of the found string

Comments

Important: API functions 0x23 and 0x24 are not reentrant.

Don't use in different tasks or in combination with BIOS commands,
which are writing to chip.ini, e.g. DHCP. Avoid race conditions with
any other API call, which writes or read also to/from chip.ini

e.g. OxAO0 0x02 Set IP address

Example (tested with Borland C/C++ 5.02:

int iniCGetString(char *sectionName, char *itenmNane, char *target, int maxlen)
{

union REGS inregs;

union REGS outregs;

struct SREGS sregs;

i nregs. h. ah
i nregs. x. bx

0x24;
FP_SEQsecti onNane) ;

i nregs. X. si FP_OFF(secti onNane) ;
sregs. es FP_SEQ(i t emNan®) ;

i nregs. x. di FP_OFF(it emNane) ;
inregs. x.cx = maxlen;

sregs. ds FP_SEQ(target);

i nregs. x. dx FP_OFF(target);

i nt 86x(0xAOQ, & nregs, &out regs, &sregs) ;

return outregs. X. ax;
}
//Declare a target buffer
unsi gned char target[100];
[l After the of this function
iniGetString("MY_SECTION', "MY_I TEM, target, 50);
/ltarget contains the chip.ini text for this item

Top of list
Index page

Interrupt OXAO service 0x25: Set the Stdio Focuskey
Set the Stdio Focuskey
Parameters

AH
Must be 0x25.

AL

Focuskey character (default CTRL-F, ASCII 6)
Return Value
Returns nothing

Comments

By default, the focus key is set to CTRL-F (ASCII 6)
At runtime, the pressed key Ctrl-F toggles between these three modes
and shows the current mode.

Key Range: 0..254

If the key is set to zero, the switching of stdio is disabled.
The focus key is not usable by the command shell or dos executable.

Related Topics

Focus key definition

Top of list
Index page

Interrupt OXAOQ service 0x26: Get the IPC@Chip device names
Get the IPC@Chip device names
Parameters

AH
Must be 0x26.

Return Value

AX=0
ES:DI contains pointer to the fixed device name stored at the IPC@Chip flash
BX:SlI contains pointer to the device name configured at chip.ini.

Related Topics

Devicename Device name definition

Developer Notes

You cannot write at the pointer es:di, because it is located at the flash memory
Both returned strings are terminated by O.

Top of list
Index page

Interrupt OXAOQ service 0x27: Suspend/Resume System Servers

Suspend/Resume FTP, Telnet or Web Server

Parameters

AH
Must be 0x27.

AL
0: Resume, 1: Suspend

BX
0: FTP Server, 1: Telnet Server, 2: Web Server

Return Value

AX=0: Success
AX=1: Server was already in the postulated state
AX=-1: Invalid Parameter

Top of list
Index page

Interrupt OXAO service 0x28: Fast Findfirst

Provide a faster access to the filesystems directories
Parameters

AH
Must be 0x28.

CX
File attribute

BX:SI
Nullterminated File Specification

ES:DI
Pointer to fjxffind struct

Return Value

AL=1 DX=0: Success
AL=0 DX=0: no file found
DX=-1: Findfirst already active

Comments

The three filefind functions (0x28 - 0x30) provides a faster Findfirst/next access than dos compatible functions at INT21h. They
work in a similiar way as the INT21h Findfirst/next functions. You have to call at first Findfirst (0x28). After that call, you could
call Findnext (0x29) as much as you need. To get the hole directory call it until it retuns an error. The directory being searched
will be locked for exclusiv access by the calling task. To unlock the directory you have to call Finddone (0x30).

Note: This function call (or the Fast Findnext function call) must be followed by a call of the Fast Finddone function!

These functions (0x28 - 0x30) are not reentrant, do not call findfirst/findnext sequences from different tasks without semaphore
protection.

The filefind struct is defined as the following description:

typedef struct filefind

{

char filenanme[12]; // Null terminated fil enane

char fileext[4]; /1 and extension

unsi gned short int fileattr; /1 M5-DCS file attributes

short int reserved; /'l Reserved

struct tag_filetinmestam

{

unsi gned short int filedate; /1l Date = ((year - 80) shl 9) or
day
unsi gned short int filetine; /1 Tinme = (hour shl 11) or (mn shl

(sec I 2)

}filetinmestanp; /1l Time & date | ast nodified

unsi gned | ong filesize; I/ File size
}

Related Topics

Fast Findnext
Fast Finddone must be called at end of the search

Top of list
Index page

(rmont h shl

Interrupt OXAO service 0x29: Fast Findnext
Continues a search which was started by Fast Findfirst (0x28)
Parameters

AH
Must be 0x29.

ES:DI
Pointer to filefind struct

Return Value

AL=1 DX=0: Success
AX=0 DX=0: no file found
DX=-1: Finfirst not called before

Comments

See also Fast Findfirst function (0x28) for description.
Note: A call of this function must be followed by a call of the Fast Finddone function!

Related Topics

Fast Findfirst must be called to start the search
Fast Finddone must be called at end of the search

Top of list
Index page

Interrupt OXAO service 0x30: Fast Finddone

Close a Findaccess started with Fast Findfirst. Do not call without Findfirst call before.

Parameters
AH

Must be 0x30.
ES:DI

Pointer to filefind struct
Return Value

AX=0 DX=0: Success
DX=-1: Findfirst not active

Comments
See also Fast Findfirst function (0x28) for description.
Related Topics

Fast Findfirst must be called before Finddone
Fast Findnext

Top of list
Index page

Interrupt OXAO service 0x31: Detect ethernet link state
Detect ethernet link state
Parameters

AH
Must be 0x31.

Return Value

AX=0: Link ok
AX!=0: No Link, no cable connected??

Top of list
Index page

Interrupt OXAO service 0x32: Set a memory gap between the loaded DOS programs

Set a memory gap between the loaded DOS programs as a memory reserve.

Some programs compiled with Borland C 5.02 (other compilers??) tries to increase their program memory block at runtime
before they e.g. opening a file with Borlandc C-Library fucntion fopen, because it requires some more memory. The programs
calls int21h 0x4A, this happens inside of the e.g. Borlandc C-Library fopen function and is not visible for the application
programmer. This memory resize call failed, if another program is loaded after the previous one, because now there is no
memory space left for increasing the memory size of the previous executed program. The program returns at fopen with an
error. The global program variable errno is set to value 8(not enough memory). To prevent this error BIOS 1.02B allows to

define the size of a memory gap between two loaded programs. The value must be defined as a number of paragraphs (1
paragraph==16 Bytes). This strategy could fail in that cases, when programs are terminated and restart again.

Parameters
AH

Must be 0x32.
BX

Number of paragraphs (range between 0 to 2048 paragraphs).

Return Value

AX=0 DX=0: Success
AX=-1: Invalid value at bx

Comments

Value can also defined at chip.ini

Developer Notes

It is not necessary to set this entry, if the application doesn't show the described error. Only if a C-Library function call sets errno to 8,
this value should to be defined. We recommend in that case a value of 128 paragraphs (2048 Bytes). The described problem was
noticed, if the BorlandC-Library function fopen (...) was used. Same happens at memory model Large and the usage of CLIB function
malloc. Malloc returns a NULL pointer.

Top of list
Index page

Interrupt OXAO service 0x33: Set stdin/stdout channel

Set the stdin/stdout channel

Parameters
AH

Must be 0x33.
AL

Bit 0 = 1 set stdout, Bit 1 = 1 set stdin

BX
Channel bits, see comment

Return Value

AX=0 DX=0: Success
AX=DX=-1: Invalid parameter

Comments

Channel bits for bx register:

Bit 0: Serial port 0 (PORT EXT)
Bit 1: Serial port 1 (PORT COM)
Bit 2: Telnet server
Bit 3: User channel

Setting a bit to zero deactivates this channel, setting a bit to one activates the specified channel

Top of list
Index page

Interrupt OXAO service 0x34: Get stdin/stdout settings
Get the stdin/stdout settings
Parameters

AH
Must be 0x34.

Return Value
AX=0, BX contains stdout settings, CX: stdin settings
Comments

Return values

Bit 0 == 1: Serial port 0 (EXT)
Bit 1 == 1: Serial port 1 (COM)
Bit 2 == 1: Telnet server

Bit 3 == 1: User channel

Top of list
Index page

Interrupt OXAO service 0x35: Install specific user stdio handlers

Install specific user stdio channel handlers

This API call allows the user to install own stdio handler functions, e.g. for an own developed input/output device connected to
the IPC@Chip (e.g. a display and/or keyboard device) or an own TCP application similiar to telnet.

The user must implement inside of his application four functions for reading and writing characters from/to his own stdin/stdout
device.

After installing these functions with this API call and setting stdin and/or stdout to the user channel with Set stdio channels
the @Chip-RTOS of the IPC@Chip calls these user functions at every stdin and stdout operation. For further details of
programming and installing those handler functions see the comment below.

Parameters

AH
Must be 0x35.

ES:DI
Pointer to struct variable of User_Stdio_Funcs, see comment

Return Value

AX=0 DX=0: Success

Comments

Necessary type definitions:

typedef int (huge *User_Kbhit)(void);

typedef void (huge *User_PutCh)(char chr);
typedef void (huge *User_PutStr)(char * pch, int n);
typedef int (huge *User_Getch)(void);

typedef struct tag_user_stdio
{
User_Kbhit user_kbhit;
User_Getch user_getch;
User_PutCh user_putch;
User_PutStr user_putstr;
}User_Stdio_Funcs;

Functions to implement by the user:

int huge user_kbhit(void); //returns 1 ,if a character is available, 0O if not

int huge user_getch(void); //read a char from stdin (wait, if none available)
void huge user_putch(char chr); //write a single char to stdout

void huge user_putstr(char * pch, int n); //write a string with n chars to stdout

The user must set the pointers at his variable from type User_Stdio_Funcs and call the API function with the address of
User_Stdio_Funcs at es:di. With es = di = 0, the user uninstalls his stdio handler.

Important:

1. If your applications exits, don't forget to uninstall your stdio handler, by calling this API call with es=di=0.

2. Do not call your implemented stdio functions inside your application, these installed functions must be called only inside of
the @Chip-RTOS.

Example(Borland C):

User Stdi o _Funcs user_stdi o_funcs; /1gl obal variable

[linplementation of users stdio functions
int huge ny_kbhit(void)

{
[
}
char huge ny_getch(void)
{
I
}
voi d huge ny_putch(char chr)
{
[
}
voi d huge my_putstr(char * pch, int n)
{
I
}
void install _mystdi o_channel (voi d)
{

union REGS inregs;
union REGS outregs;

struct SREGS sregs;

user_stdio_funcs.user_kbhit = my_kbhit;
user _stdio_funcs. user_getch = ny_getch;
user_stdio_funcs.user_putch = nmy_putch;
user_stdio_funcs.user_putstr = my_putstr;

i nregs. h. ah=0x35;

sregs. es =FP_SEQ &user _stdi o_funcs);
i nregs. x. di =FP_OFF(&user _stdi o_funcs);
i nt 86x(0xA0, & nregs, &outregs, &sregs) ;

}
voi d renmove_nystdi o_channel (voi d)
{
union REGS inregs;
union REGS outregs;
i nregs. h. ah=0x35;
Ssregs. es = 0;
i nregs. x.di= 0;
i nt 86x(0xAQ, & nregs, &outregs, &sregs) ;
}
unsi gned int set_stdi o_channel (unsi gned int channels)
{
union REGS inregs;
union REGS outregs;
i nregs. h. ah=0x35;
i nregs. h. al =3; //set both: stdin and stdout
i ntregs. x. bx = channel s;
i nt 86(0xAO0, & nr egs, &out r egs) ;
return outregs. x. ax;
}
int mai n(voi d)
{
I

instal |l _nystdi o_channel ();
set _stdio_channel (0x0D); [//COM TELNET, USER
I....

/lat the end oft program

set _stdi o_channel (0x06); //COM TELNET
renove_nystdi o_channel ():

Top of list
Index page

Interrupt OXAOQ service 0x36: Install a System Server Connection Handler function

Install a user specific System Server Connection Handler function.
The handler function will be called if a client establishs a connection. This functions allows application programmers to
implement own callback functions for controling access to the default @Chip-RTOS servers.

Parameters
AH

Must be 0x36.
BX

0: FTP Server, 1: Telnet Server, 2: Web Server

ES:DI
Pointer to handler function

Return Value

AX=0: Success
AX=-1: Invalid Parameter

Comments

A connection Handler function must be declared in the following way:

i nt huge User Connecti onHandl er (struct sockaddr_in *sockptr);

The connection handler will be called if a client establishs a connection to the server (FTP, WEB, Telnet). The handler could
read the IP Address and the Port in the sockaddr_in struct and using TCPIP Api function Ox11 API_INETTOASCII (see

TCPIP_API description). If the handler return 0 the connection will be established. If it returns a value unequal to 0, the
connection will be abort.

Example for usage:

The implemented handler function could check the source IP address (Clients IP), compare this IP with an application internal
list of allowed IP addresses and reject the connection by returning a value unequal to zero, if the source IP is not a member of
the list.

To uninstall a connection handler call this function with a Null pointer (es=di=0).

Top of list
Index page

Interrupt OXAO service 0x37: Enable/Disable Filesharing

Enable disable Filesharing of Int21h open/create
Parameters

AH
Must be 0x37.

AL
0: set mode, 1: get mode

BX
0: disable, 1: enable (Sharing mode)

Return Value

AX=0: Success, contains Sharing mode if al=1
AX=-1: Invalid Parameter

Comments

As default the filesharing is disabled. This has the effect, that a file which is opened for write access can't be opened a second
time for read or write access. Also a file which is opened for read access can be only opened for read access for a second
time.

To avoid this security feature you can enable the filesharing. This could be also done with the CHIP.INI entry FILESHARING .

NOTE: Be careful by open a file two times with one or two write accesses!

Top of list
Index page

Interrupt OXAO service 0x38: Get Filename by Handle
Returns the Filename string depending on a specific filehandle.
Parameters

AH
Must be 0x37.

CX
Filehandle

Return Value

ES:BX conatins Pointer to Filename string AX=0: Success, contains Sharing mode if al=1
AX=-1: Invalid Filehandle

Top of list
Index page

End of document

BELCK

Beck IPC GabH

CHIP.INI Documentation - BIOS V1.02 Beta

IPC@Chip Documentation Index

Configuration News

CONFIG

The IPC@Chip system configuration is controlled via the CHIP.INI file.
At startup, the system reads the file A:\ chi p. i ni

found here to initialize the system.

CONFIG News

. STDIO_STDIN

. STDIO_STDOUT

. STDIO_FOCUS

. STDIO_FOCUSKEY
. STDIO CTRL_C

. IP_ADDRESS

. IP_NETMASK

. IP_GATEWAY

. |IP_DHCP

. IP_TCPIPMEM

. UDPCFG_LEVEL

. PPPSERVER ENABLE

and uses the settings

PPPSERVER_MODEMTRACE

PPPSERVER_COMPORT
PPPSERVER_ADDRESS

. PPPSERVER REMOTEADDRESS

. PPPSERVER NETMASK
PPPSERVER_GATEWAY

. PPPSERVER_AUTH

. PPPSERVER_IDLETIME

. PPPSERVER FLOWCTRL

. PPPSERVER MODEM
PPPSERVER_USERX
PPPSERVER_PASSWORDx

. PPPSERVER BAUD
. PPPSERVER_INITCMDx

http://www.bcl.de/

PPPSERVER

INITANSWERX

PPPSERVER

INITTIMEQUTX

PPPSERVER

INITRETRIESX

PPPSERVER

MODEMCTRL

PPPSERVER

CTRLTIME

PPPSERVER

CTRLCMDx

PPPSERVER

CTRLANSWERX

PPPSERVER

CTRLTIMEOUTX

PPPSERVER

CTRLRETRIESX

PPPSERVER

CMDMODE

PPPSERVER

HANGUPDELAY

PPPSERVER

HANGUPCMDx

PPPSERVER

HANGUPANSWERX

PPPSERVER

HANGUPTIMEOUTX

PPPSERVER

HANGUPRETRIESX

PPPSERVER

CONNECTMSGx

PPPSERVER

CONNECTANSWERX

PPPSERVER

CONNECTTIMEOUTX

RAMDRIVE_SIZE

TIMER 1C
TIMER_AF

FTP_ENABLE

FTP_CMDPORT

FTP_LOGINDELAY

FTP_TIMEOUT

FTP_USERX

FTP_PASSWORDx

FTP_ACCESSRIGHTX

. FTP_DRIVEX

FTP_ROOTDIRX

WEB_ENABLE

WEB_MAINPAGE

. WEB_TEMPPATH

. WEB_DRIVE

WEB_ROOTDIR

WEB_MAXCGIENTRIES

WEB_WEBSERVERSTACK

. WEB_HTTPPORT

. WEB_USERO

WEB_PASSWORDO

TETP_TFTPPORT

TELNET_TELNETPORT

. TELNET TIMEOUT

. TELNET LOGINDELAY

TELNET LOGINRETRIES

TELNET USERX

TELNET_PASSWORDx

. TELNET ENABLE

. DEVICE FILESHARING

. DEVICE NAME

. SERIAL_EXT DMA

. SERIAL_COM_DMA

. SERIAL_SEND_DMA

. SERIAL_EXT RECVQUEUE

. SERIAL_EXT_SENDQUEUE

. SERIAL_COM_RECVQUEUE

. SERIAL_COM_SENDQUEUE

. SERIAL_COM_BAUD

. SERIAL_EXT BAUD

. DOSLOADER_MEMGAP
BATCH BATCHMODE
BATCH_EXECTIMEOUT

STDIO

[STDIO]
STDIN=Define standard input device

Define your device for standard input.
Valid devices are COM, EXT and TELNET. You can define several devices simultaneously.

Comments

The following example defines both COM and TELNET for stdin:

[STD O
STDI N=COM TELNET

By default, both COM and TELNET are used.

Top of list
Index page

STDIO

[STDIO]
STDOUT=Define standard output device

Define your device for standard output.
Valid devices are COM, EXT and TELNET. You can define several devices simultaneously.

Comments

The following example defines both COM and TELNET for stdout:

[STD g
STDOUT=COM TELNET

By default, both COM and TELNET are used.

Top of list
Index page

STDIO

[STDIO]
FOCUS=Command shell and/or user executables

Set the stdio focus to the command shell and/or to the user executables.

Valid entries are USER or SHELL

If only USER is defined, stdio in the command shell is suppressed.
If only SHELL is defined, stdout and stdin in the users DOS executables
are disabled.

Comments

The following example enables stdio for both USER and SHELL.:

[STD g
FOCUS=SHELL USER

By default, stdin and stdout for both SHELL and USER are enabled.

Important : If stdio is enabled for both, there is a rivalry
between USER and SHELL.

At runtime, pressing of the focus key (default is Ctrl-F) toggles
between these three modes and shows the current mode.

Top of list
Index page

STDIO

[STDIO]
FOCUSKEY=Key

Set the key to switch the stdio focus
Comments

The following example sets Ctrl-F (ASCII 6) as the current stdio focus key:

[STD g
FOCUSKEY=6

By default, the focus key is set to CTRL-F (ASCII 6)
At runtime, the pressed key Ctrl-F toggles between these three modes
and shows the current mode.

Key Range: 0..254

If the key is set to zero, the switching of stdio is disabled.
The focus key is not usable by the command shell or dos executable.

Top of list
Index page

STDIO

[STDIO]
CTRL_C=0/1

Disable/enable terminating the execution of autoexec.bat via ctrl-c key.
The following example disables the ctrl-c control.

[STDI O
CTRL_C=0

By default, CTRL_C is enabled.

Top of list
Index page

IP

[IP]
ADDRESS=IP Address of the Ethernet interface

Defines the IP address if no DHCP is used.
Comments

Only numerical IP addresses are allowed here.
Example: ADDRESS=192. 168. 200. 1

If no address entry was found, the IP address will be setto 1. 1. 1. 1.
Related Topics

IP command line

Set IP Address API function

Top of list
Index page

IP

[IP]
NETMASK=IP Address mask of the Ethernet interface

Defines the IP address subnet mask if no DHCP is used.
Comments

Example: NETMASK=255. 255. 255. 224

If no subnet mask entry was found, the subnet mask will be set to 255. 255. 255. 0.
Related Topics

NETMASK command line
Set IP subnet mask API function

Top of list
Index page

IP

[IP]
GATEWAY=Gateway IP Address of the Ethernet interface

Defines the IP address of the gateway.
Comments

Example: GATEWAY=195. 243. 140. 65
If no gateway entry was found, the gateway address will be set to 0. 0. 0. O.

The TCP/IP stack of the IPC@Chip supports only one valid default gateway for all device interfaces:
Ethernet, PPP Server and PPP Client.

If you define a gateway in the PPPSERVER section of the chi p. i ni for the PPP server interface,

it becomes the default gateway for all interfaces when a PPP link to the server is established. During a
PPP server connection the command i pcf g indicates this PPP default gateway. After the PPP
session,

the old gateway (if any) for the Ethernet interface will be restored.

As of BIOS version 070, the TCP/IP API supports adding and deleting a default gateway:

o Interrupt OXAC, Service 0x80 : add a default gateway
o Interrupt OXAC, Service 0x81 : delete default gateway
o Interrupt OXAC, Service 0x82 : get default gateway

Related Topics

TCP/IP API documentation

GATEWAY command line

Set IP gateway API function

ADD DEFAULT GATEWAY API function

Top of list
Index page

IP

[IP]
DHCP=0/1 Ethernet interface

Set to 1 if DHCP should be used to get the IP configuration from a DHCP server.
If defined as 0, a static network configuration is used.

Comments
Any settings for IP Address, subnet mask and gateway are ignored if DHCP is used.
Related Topics

DHCP command line

Top of list
Index page

IP

[IP]
TCPIPMEM=Size

Set the size of the TCP/IP memory block in kBytes. This block is allocated at the start
of the TCP/IP stack.

Valid Range: Between 30 kBytes and 160 kBytes (An out of range value for TCPIPMEM
will be set to closest of these limit values.)

Default value: 90 kBytes when BIOS configured without PPP capability (server or client)

98 kBytes when BIOS configured with PPP capability

Example: TCPI PMEM=60
Comments

The TCP/IP API function 0x78, GET_MEMORY _INFO , reports the current used memory of the TCP/IP

stack
Since BIOS version 1.02B we allow configuring a max value of 160kBytes, because some application
programmers may require more then the old limit of 132 kByte.

Top of list
Index page

UDPCFG

[UDPCFG]
LEVEL=mask

Defines the supported functions of the configuration server.

Set LEVEL as a bit mask to define the functions that the configuration server should listen to.
The bit assignments are as follows:

0x00 No function

0x01 Allow detection on the network.

0x02 Allow change of IP configuration.

0x10 Allow programming of flash.
If defined as 0, the configuration server task will not start.

Example: LEVEL=0x03
This would allow detection on the network and changing the IP configuration, but no BIOS update.

Comments
By default, all options are enabled.
Related Topics

Run-time adjustments to LEVEL

Top of list
Index page

PPPSERVER

[PPPSERVER]
ENABLE=0/1

Disable/enable PPP server

[PPPSERVER]
ENABLE=1

By default, PPP server is enabled.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
MODEMTRACE=0/1

Disable/enable the trace of the control communication between SC12 and a connected modem.
The defined modem strings(AT commands and answers) at chip.ini will pe printed at STDOUT, if
MODEM_TRACE=1.

Could be useful for testing the modem configuration and debugging the ppp dial procedures.

[PPPSERVER]
MODEMTIRACE=1

By default, tracing is disabled.

Comments

Received characters with an ASCII value smaller 0x20 are printed as numbers.

Top of list
Index page

PPPSERVER

[PPPSERVER]
COMPORT=Define serial device for the PPP server

Define your serial device for the PPP server.
Valid devices are COM or EXT.

Comments

The following example defines EXT as device for the PPP server:

[PPPSERVER]
COVPORT=EXT

By default, no COM port is enabled.
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
ADDRESS=IP Address of the PPP server interface

Defines the IP address for the PPP server.
Comments

Only numerical IP addresses are allowed here.
Example: ADDRESS=192. 168. 205. 1
If no address entry was found, the address will be setto 1. 1. 2. 1.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
REMOTEADDRESS=IP Address for the remote PPP client

Defines the IP address for the remote PPP client.
Comments

Only numerical IP addresses are allowed here.
Example: REMOTEADDRESS=192. 168. 205. 2
If no address entry was found, the remote address will be setto 1. 1. 2. 2.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
NETMASK=IP Address subnet mask of the PPP server

Defines the IP address subnet mask of the PPP server.
Comments

Example: NETMASK=255. 255. 255. 0
If no subnet mask entry was found, the subnet mask will be set to 255. 255. 255. 0.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
GATEWAY=IP Address of gateway

Defines the IP address of the gateway for PPP interface.
Comments

Example: GATEWAY=195. 243. 140. 65
If no gateway entry was found, the gateway address will be set to 0. 0. 0. O.

The TCP/IP stack of the IPC@Chip supports only one valid default gateway for all device interfaces:
Ethernet, PPP Server and PPP Client.

If you define a gateway in the PPPSERVER section of the chi p. i ni for the PPP server interface,
it becomes the default gateway for all interfaces when a PPP link to the server is established. During a
PPP server connection the command i pcf g indicates this default gateway. After the PPP session,

the old gateway (if any) for the Ethernet interface will be restored.

As of BIOS version 070, the TCP/IP API supports adding and deleting a default gateway:

o Interrupt OXAC, Service 0x80 : add a default gateway
o Interrupt OXAC, Service 0x81 : delete default gateway
o Interrupt OXAC, Service 0x82 : get default gateway

Related Topics

PPP server configuration instructions
TCP/IP API documentation
Description of the command processor

Top of list
Index page

PPPSERVER

[PPPSERVER]
AUTH=0/1/2

Set PPP authentication mode for the remote PPP client
0: No authentication
1: PAP authentication
2: CHAP authentication

Comments

The following example selects PAP authentication mode:

[PPPSERVER]
AUTH=1

By default, authentication is disabled.

If AUTH!=0 you must define two username / password pairs used to

authenticate the PPP client. The client must use one of these pairs
to get connected to the SC12 PPP server.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
IDLETIME=Seconds

Sets the idle time, after which the PPP server closes the connection.

[PPPSERVER]
| DLETI ME=500

By default, PPP server idle time is 120 seconds. A value of 0 means no idle timeout.
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
FLOWCTRL=0/1/2

Set flow control mode of the PPP servers serial device:

0: none
1: XON/XOFF (See caution below!)
2: RTS/ICTS

Example: Here XON/XOFF flow control is enabled

[PPPSERVER]
FLOACTRL=1

By default, FLOACTRL=2 (RTS/CTS)
Comments

Caution:
If you use the default DMA mode for the selected COM port, XON/XOFF mode is not available.
XON/XOFF is available only if the serial DMA modeis disabled in chi p. i ni file.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER
[PPPSERVER]

MODEM=0/1

Disable/enable usage of a modem

[PPPSERVER]
MODEME1L

By default, the usage of a modem is disabled.
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
USERx=user

Define the user name for PPP server, using PAP authentication

Comments

You can define a USERO and a USER1.

Default user is 'ppps' , password is 'ppps’ for both USERO and USERL.
You must specify both the user name and his password.

Both user name and password must be lower case.

The entries are only valid, if AUTH=1 is specified.

Maximum Name Size: 49 characters
Important notice: To avoid security leaks you must define both user names and passwords.
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
PASSWORDx=password

Define the password for a PPP server user, using PAP authentication.
Comments

You can define a PASSWORDO for USERO and a PASSWORD1 for USER1
Default user is 'ppps' , password is 'ppps'.

Both user name and password must be lower case.

The entries are only valid, if AUTH=1 is specified

Maximum Password Size: 49 characters

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
BAUD=BAUD Rate

Sets the BAUD rate of the PPP server COM port.
Comments

The following example sets the PPP server COM port to 19,200 BAUD.

[PPPSERVER]
BAUD=19200

By default, PPP server BAUD rate is 38400 (with 8 data bits, no parity, 1 stop bit).

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
INITCMDx=modem command

Defines modem commands to initialize your modem connected to the SC12

at the start of the SC12 PPP server and after a modem hang-up following a PPP session.
Comments

You can define a maximum of three modem commands e.g. | Nl TCVDO=ATZ .
The entries are only valid, if MODEM=1 is specified.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
INITANSWERXx=modems answer of init command X

Defines the expected modem answer x for the initialize command x.
Comments

You can define a maximum of three modem answers e.g. | Nl TANSWERO=CK .
The entries are only valid, if MODEM=1 is specified.

Default for all answer strings: OK

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
INITTIMEOUTx=timeout in seconds for wait an the modem's answer

Define the timeout value in seconds for waiting on an answer from the modem.
A value of 0 means wait forever for the modem answer.

Comments

Example: | NI TTI MEQUT0=2

The entries are only valid, if MODEM=1 is specified.

Default value: 3 seconds
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
INITRETRIESx=Retries, if the modem init answer failed

Define the number of retries used when the modem initial answer fails.
Comments

Example: | NI TRETRI ES0=2
This entry is only valid if MODEM=1 is specified.

Default value: 1
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
MODEMCTRL=0/1

Allow modem online control by PPP server.
[PPPSERVER]
MODEMCTRL=1

By default, the usage of a modem online control is disabled.
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CTRLTIME=Seconds

Sets the idle interval time, at which the PPP server executes the configured control commands (see
below).

[PPPSERVER]
CTRLTI ME=120

By default, PPP server idle control time is 60 seconds.
The PPP server executes the control commands only, if within this interval no PPP data comes in
and closes the current PPP connection, if one of the commands failed.

The CTRLTIME must be a smaller value than the IDLETIME of the PPP server (see above)

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CTRLCMDx=modem online control command

Defines modem command to control, if modem is online or not
at the start of the SC12 PPP server and after a modem hang-up following a PPP session.

Comments

You can define a maximum of three modem commands e.g. CTRLCVDO=+++ .
The entries are only valid, if MODEMCTRL=1 is specified.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CTRLANSWERx=modems answer of ctrl command X

Defines the expected modem answer x for the online control command x.
Comments

You can define a maximum of three modem answers e.g. | Nl TANSWERO=CK .
The entries are only valid, if MODEMCTRL=1 is specified.

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CTRLTIMEOUTx=timeout in seconds for wait on the modem's answer

Define the timeout value in seconds for waiting on an answer from the modem.
A value of 0 means wait forever for the modem answer.

Comments

Example: CTRLTI MEQUT0=2
The entries are only valid, if MODEMCTRL=1 is specified.

Default value: 3 seconds

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER
[PPPSERVER]

CTRLRETRIESx=Retries, if the modem online control answer failed
Define the number of retries used when the modem control answer fails.
Comments

Example: CTRLRETRI ES0=2
This entry is only valid if MODEMCTRL=1 is specified.

Default value: 1

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CMDMODE=switch to modem command mode

Define the string, which switches the modem into the command mode.
Comments

The entries are only valid if MODEM=1 is specified.

Default string for CMDMODE:+++

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
HANGUPDELAY=Time in seconds for switching modem into command mode

Defines the time in seconds for switching modem into command mode for hang-up commands.

Comments

The entries are only valid if MODEM=1 is specified.

Default time: 2 seconds
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
HANGUPCMDx=modem command

Define modem commands to hang-up the modem connected to the SC12.
Comments

You can define a maximum of three modem hang-up commands e.g. HANGUPCVDO=ATH,
which will be executed if the PPP connection is closed

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
HANGUPANSWERx=modems answer for hang-up command x

Define the expected modem answer x for the hang-up command x
Comments

You can define a maximum of three modem answers e.g. HANGUPANSVWERO=CK

Default for all answer strings: OK

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
HANGUPTIMEOUTx=timeout in seconds for wait on answer from modem

Define the timeout value in seconds used when waiting on the modem's answer.
A value of 0 means wait forever.

Comments

Example: HANGUPTI MEQUT0=2

Default value: 3 seconds
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
HANGUPRETRIESx=Retries, if the modem hang-up answer failed

Define the number of retries used if the modem hang-up answer fails.
Comments

Example: HANGUPRETRI ES0=2

Default value: 1 try
Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CONNECTMSGx=modem message

Define the expected modem message to get connected to a peer modem
Comments

You can define a maximum of three modem messages e.g. CONNECTMSQ)=RI NG

Defaults:
CONNECTMS@)=RI NG
CONNECTMSGL=CONNECT

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER

[PPPSERVER]
CONNECTANSWERx=modem command for incoming connect message X

Define the expected modem answer x for the incoming connect message x
Comments

You can define a maximum of three modem answers e.g. CONNECTANSWERO=ATA

Defaults;: CONNECTANSWERO=ATA

Related Topics

PPP server configuration instructions

Top of list
Index page

PPPSERVER
[PPPSERVER]

CONNECTTIMEOUTx=timeout seconds for wait on the modem's connect message x

Define the timeout value in seconds used when waiting on the modem connect message.
A value of 0 means wait forever.

Comments

Example: CONNECTTI MEQUT0=0

Default values:
CONNECTTI MEQUT0=0
CONNECTTI MEQUT1=60

Related Topics

PPP server configuration instructions

Top of list
Index page

RAMDRIVE

[RAMDRIVE]
SIZE=size

Set the size in KByte of the RAM drive C..
If defined as 0, no RAM drive is configured.
Maximum size is 256 Kbyte

Comments

Default size: 0 (nho RAM drive C:)

Top of list
Index page

TIMER

[TIMER]
1C=ms

Set the interval in milliseconds for timer interrupt 0x1C.
Range: 1 to 32767, Default value=55 ms.

Top of list
Index page

TIMER

[TIMER]
AF=ms

Set the interval in milliseconds for timer interrupt OXAF.
Range: 1 to 32767, Default value=4 ms.

Top of list
Index page

FTP

[FTP]
ENABLE=0/1

Define if the FTP server should be activated.
Comments

Use 0 to disable, 1 to enable.
By default, the FTP server is enabled.

Related Topics

BATCHMODE command

Top of list
Index page

FTP

[FTP]
CMDPORT=port

Set the command port number of the ftp server.
Default FTP command port: 21
Example:

[FTP]
CVDPORT=5000

Top of list
Index page

FTP

[FTP]
LOGINDELAY=0/1

Define if the delayed login of the FTP server should be (de)activated.
Comments

Use 0 to deactivate, 1 to activate.

By default, the delayed login is enabled.

The delay time starts with 400 milliseconds.

After each following failed login the delay time will be doubled until it reached 20 seconds.
After sucessful login the delay time will be set back to 400 milliseconds.

Top of list
Index page

FTP

[FTP]
TIMEOUT=sec

Define the inactivity timeout for the FTP server in seconds.
The minimum value for the timeout is 20 seconds, maximum is 65535 seconds.

Comments

Default is 300 seconds.
RFC 1123 states that the minimum idle timeout should be 5 minutes.

Top of list
Index page

FTP

[FTP]
USERXx=user

Define the user name for FTP
Comments

You can define a USERO and a USER1
Default users are: 'anonymous' (no password) and 'ftp' (password is 'ftp’).
You must specify both the user name and his password.

Both user name and password are not case sensitive.
Maximum Name Size: 19 characters

Important notice: To avoid security leaks you must define both user names and passwords.

Top of list
Index page

FTP

[FTP]
PASSWORDx=password

Define the password for a FTP user
Comments

You can define a PASSWORDO for USERO and a PASSWORDL1 for USER1
Default users are anonymous (no password) and ftp (password is 'ftp’).

Both user name and password are not case sensitive.

Maximum Password Size: 19 characters

Top of list
Index page

FTP

[FTP]
ACCESSRIGHTx=Access rights for defined Users

By using this CHIP.INI entry you can deny the write access for USERO or USER1.
0 - write and read access enabled

1 - write access denied, read access enabled

Example:

[FTP]

USERO=0tt 0
PASSWORDO=0t t 053pass
ACCESSRI GHT0=1

Comments

You can only forbit the write acces if you have defined a User before by using USERx and PASSWORDX
entries.

By default the write access is enabled for both Users.

Top of list
Index page

FTP

[FTP]
DRIVEx=Set users FTP drive

Set users FTP drive
0: Drive A
1: Drive B
2: Drive C
If the drive does not exist, the default drive A will be set.

Comments

The following example defines the root drive for USERO

[FTP]
DRI VEO=1

Top of list
Index page

FTP

[FTP]
ROOTDIRx=Name of the users FTP server root directory

Define the name of users FTP server root directory.

Comments

The following example defines both root directory for USER1

[FTP]
ROOTDI R1=USERDI R

If the directory doesn't exist, the FTP server closes the connection.

Important notice: To avoid security leaks you should define one "normal” user
with a directory below the "\" directory.

The other user rootdir should not defined, this "superuser” or "admin” is able
to access all files of the system.

If ROOTDIRX is set you must also specify DRIVEX (see above).

Maximum ROOTDIRXx size: 64 characters

Top of list
Index page

WEB

[WEB]
ENABLE=0/1

Define if the Web server should be activated.
Comments

Use 0 to disable, 1 to enable.
By default, the Web server is enabled.

Top of list
Index page

WEB

[WEB]
MAINPAGE=Name of the main page

Define the name of Web server's main page. The Web server opens this page if a browser request like
http://192. 168. 200. 4/ isreceived. Typical names are "main.htm" (default) or "index.htm". The
console command webst at shows the current main page.

Related Topics

Set Web Server Main Page API Function

Top of list
Index page

WEB

[WEB]
TEMPPATH=Name of atemporary Web server path

Defines a temporary path for finding files.
If the Web server cannot find the file in its default directory, it will try to find it in this temporary path.
Pathname should include the drive specification.

Comments

This function allows the Web server to locate HTML files produced on the SC12 RAMDISK by application
programs.

The maximum string length is 32.
Example:

[VEB]
TEMPPATH=C: \ web

The webst at command shows the current temporary path.

Top of list
Index page

WEB

[WEB]
DRIVE=Set Web server's disk drive

Set Web server's disk drive.
0: Drive A
1: Drive B
2: Drive C
If the drive does not exist, the default drive A will be set.
The console command webst at shows the current Web server drive.

Top of list
Index page

WEB

[WEB]
ROOTDIR=Name of the root directory

Define the name of Web server's root directory. If the directory does not exist, the Web server sets "\" as
the default root directory.

The console command webst at shows the current root directory.

Comments

Important notice: To avoid security leaks you should define a directory below the
"\" directory. If you use "\" as web root directory everybody could read all your files.

Related Topics

Set Web Server Root Directory APl Function

Top of list

Index page

WEB

[WEB]
MAXCGIENTRIES=Maximum number of available CGI entries

Set the maximum number of entries for the Web server (Default: 10)
Range: 210 128

The console command cgi st at shows the current number.

Top of list
Index page

WEB

[WEB]
WEBSERVERSTACK=Stack size

Set stack size (bytes) for the Web server task. The default and minimal stack size is 2048 Bytes.
Programmers of CGI functions, who are using Microsoft C-Compilers with C-Library functions
e.g. sprintf , which require a lot of stack space, should increase this size to 6144 (6KBytes).
The maximum value is 10240.

Top of list
Index page

WEB

[WEB]
HTTPPORT=port

Set the port number of the web server.
Default http port: 80
Example:

[VEB]
HTTPPORT=81
The console command webst at shows the current http port number.

Top of list
Index page

WEB

[WEB]
USERO=Username for WebServer Put Methode

Define the Username to transfer files to the Web server's root directory using the HTTP Put method.
Standard Username is 'WEB'

The console command webst at shows the Username and Password.

Comments

Important notice: To avoid security leaks you should define a Username and Password.

Top of list
Index page

WEB

[WEB]
PASSWORDO=Password for WebServer Put Methode

Define the Password to transfer files to the Web server's root directory using the HTTP Put method.
Standard Password is "'WEB'

The console command webst at shows the Password and Username.

Comments

Important notice: To avoid security leaks you should define a Username and Password.

Top of list
Index page

TFTP

[TFTP]
TFTPPORT=port

Set the port number of the TFTP server.
Default TFTP port: 5000
Example:

[TFTP]
TFTPPORT=69

Top of list
Index page

TELNET

[TELNET]
TELNETPORT=port

Set the port number of the telnet server.
Default telnet port: 23
Example:

[TELNET]
TELNETPORT=5000

Top of list
Index page

TELNET

[TELNET]
TIMEOUT=Telnet timeout minutes

Telnet session will automatically close after TIMEOUT minutes without any
characters received from the client. A TIMEOUT setting of zero means no timeout.

Default Value: TI MEQUT=0 (no timeout)

Top of list
Index page

TELNET

[TELNET]
LOGINDELAY=0/1

Define if the delayed login of the Telnet server should be (de)activated.
Comments

Use 0 to deactivate, 1 to activate.

By default, the delayed login is enabled.

The delay time starts with 400 milliseconds.

After each following failed login the delay time will be doubled until it reached 20 seconds.
After sucessful login the delay time will be set back to 400 milliseconds.

Top of list
Index page

TELNET

[TELNET]
LOGINRETRIES=number of login retries

Define the number of login retries until telnet session will be closed.
Example:

[TELNET]
LOGI NRETRI ES=3

Comments

The default value is 5.

Top of list
Index page

TELNET

[TELNET]
USERXx=user

Define the user name for TELNET
Comments

You can define a USERO and a USER1

Default user is: 'tel' , password is 'tel'.

You must specify both the user name and his password.
Both user name and password are not case sensitive.

Maximum Name Size: 19 characters

Important notice: To avoid security leaks you must define both user names and passwords.

Top of list
Index page

TELNET

[TELNET]
PASSWORDx=password

Define the password for a telnet user

Comments

You can define a PASSWORDO for USERO and a PASSWORDL1 for USER1
Default user is 'tel' , password is 'tel'.
Both user name and password are not case sensitive.

Maximum Password Size: 19 characters

Top of list
Index page

TELNET

[TELNET]
ENABLE=0/1

Define if the Telnet server should be activated.
Comments

Use 0 to disable, 1 to enable.
By default, the Telnet server is enabled.

Top of list
Index page

DEVICE

[DEVICE]
FILESHARING=0/1

Disable/Enable the filesharing. See also BIOS Ints Function 0x37.

Comments

O=disable, 1=enable

Top of list
Index page

DEVICE

[DEVICE]
NAME=name

Define the name of this device.

Comments

This name will show up with the 'Chiptool’ software when the network is scanned.

Maximum Name Size: 20 characters

Top of list
Index page

SERIAL

[SERIAL]
EXT_DMA=0/1

Disable/enable DMA receive mode (DMAO/Int5) at the EXT port. If DMA

receive mode is disabled, the EXT port works with the standard serial interrupt.

The recommended mode is the DMA receive mode. It is only necessary to disable the
DMA receive mode for the EXT port, if DMAO is needed by an external device

(in the future). In the IRQ receive mode, you may loose characters if the system

gets lots of interrupts (e.g. network) or if you are writing to the flash disk (file system calls).
See documentation of the Hardware API .

Example which disables DMA receive mode on the EXT port.
[SERI AL]
EXT_DMA=0

By default, DMA receive mode is enabled.

Top of list
Index page

SERIAL

[SERIAL]
COM_DMA=0/1

Disable/enable DMA receive mode (DMA1/Int6) at the COM port. If DMA

transfer is disabled, the COM port works with the standard serial interrupt.

The recommended mode is the DMA receive mode. It is only necessary to disable the
DMA receive mode for the COM port if DMAL will be needed by an external device

(in the future). In the IRQ receive mode, you may loose characters if the system

gets lots of interrupts (e.g.network) or if you are writing to the flash disk (file system calls).

See documentation of the Hardware API .

Example which disables DMA receive mode on the COM port.
[SERI AL]
COM_DVA=0

By default, DMA receive mode is enabled.

Top of list
Index page

SERIAL

[SERIAL]
SEND_DMA=0/1

Select the DMA send mode for a serial port.
Comments

Use 0 to enable the DMA send mode for the EXT port.
Use 1 to enable the DMA send mode for the COM port.

Example which enables the DMA send mode on the COM port.
[SERI AL]
SEND_DVA=1

By default, DMA send is disabled.

Important:

The IPC@Chip SC12 has only two DMA channels. By default both are used for receiving characters from
the COM and EXT port. If you want to use the DMA send mode for one serial port (e.g. the EXT port), the
second port (e.g. the COM port) works automatically with the standard serial interrupt.

Developer Notes

This mode is still under development, please contact us at our internet newsgroup or direct by email, if you have
questions,problems or suggestions.

Top of list
Index page

SERIAL

[SERIAL]
EXT_RECVQUEUE=size

Set the receive queue size of the EXT port. Minimum size is 1024.
Maximum size is 10240 byte.

Comments

Example:
[SERI AL]
EXT_RECVQUEUE=2048

By default, the receive queue size is 1024 byte.
If it is planned to use PPP server or PPP client the size should set to 4096.

Top of list
Index page

SERIAL

[SERIAL]
EXT_SENDQUEUE=size

Set the send queue size of the EXT port. Minimum size is 1024.
Maximum size is 10240 byte.

Comments

Example:
[SERI AL]
EXT_SENDQUEUE=2048

By default, the send queue size is 1024 byte.
If it is planned to use PPP server or PPP client the size should set to 4096.

Top of list
Index page

SERIAL

[SERIAL]
COM_RECVQUEUE=size

Set the receive queue size of the COM port. Minimum size is 1024.
Maximum size is 10240 byte.

Comments

Example:
[SERI AL]
COM_RECVQUEUE=2048

By default, the receive queue size is 1024 byte.
If it is planned to use PPP server or PPP client the size should set to 4096.

Top of list
Index page

SERIAL

[SERIAL]
COM_SENDQUEUE=size

Set the send queue size of the COM port. Minimum size is 1024.
Maximum size is 10240 byte.

Comments

Example:
[SERI AL]
COM_SENDQUEUE=2048

By default, the send queue size is 1024 byte.
If it is planned to use PPP server or PPP client the size should set to 4096.

Top of list
Index page

SERIAL

[SERIAL]
COM_BAUD=BAUD Rate

Set the BAUD rate of the COM port.
Comments

Example:

[SERI AL]
COM_BAUD=9600

By default, the BAUD rate of the COM port is 19200 (with 8 data bits, no parity, 1 stop bit).

Top of list
Index page

SERIAL

[SERIAL]
EXT_BAUD=BAUD Rate

Set the BAUD rate of the EXT port.
Comments

Example:

[SERI AL]
EXT_BAUD=9600

By default, the BAUD rate of the EXT port is 19200 (with 8 data bits, no parity, 1 stop bit).

Top of list
Index page

DOSLOADER

[DOSLOADER]
MEMGAP=Paragraphs

Set a memory gap between the loaded DOS programs as a memory reserve.

Some programs compiled with Borland C 5.02 (other compilers??) tries to increase their program
memory block at runtime before they e.g. opening a file with Borland C-Library function fopen, because it
requires some more memory. The programs calls int21h 0x4A, this happens inside of the e.g. BorlandC-
Library fopen function and is not visible for the application programmer. This memory resize call failed, if
another program is loaded after the previous one, because now there is no memory space left for
increasing the memory size of the previous program. The program returns at fopen with an error The
global program variable errno is set to value 8(not enough memory). To prevent this error BIOS 1.02B
allows to define the size of a memory gap between two loaded programs. The value must be defined as a
number of paragraphs (1 paragraph==16 Bytes, see comment). This strategy could fail in that cases,
when programs are terminated and restart again.

Comments

Example:

[DOSLOADER]
MEMGAP=128

By default, MEMGAP is set to 0, Maxvalue is 2048 paragraphs, a larger is automatic reduced to 2048
Related Topics

Set memory gap API function

Developer Notes

It is not necessary to set this entry, if the application doesn't show the described error, or if only the last executed
DOS program does file access with C-Library call fopen . Only if a C-Library function call sets the C-Lib variable
errno to 8, this value should to be defined. We recommend in that case a value of 128 paragraphs (2048 Bytes).

The described problem was noticed, if the BorlandC-Library function fopen (...) was used. Same happens at
memory model Large and the usage of CLIB function malloc. Malloc returns a NULL pointer.

Top of list
Index page

BATCH

[BATCH]
BATCHMODE=0/1

Sets the batch file execution mode of DOS programs.

BATCHMODE=0 : (Default mode)
The programs listed in the batch file will be executed concurrently, starting one after
another, without waiting for completion (or going resident) of the predecessor program.
The only exceptions are the WAIT and REBOOT commands.

BATCHMODE=1 :
The listed programs will be executed sequentially, one at time (similar to DOS).
The execution of the successor program will be delayed until the current program either
finishes, terminates resident by calling DOS Interrupt 21h Service 0x31or makes the

BIOS Interrupt OxAO Service Ox15batch file wakeup call.

The maximum delay time for execution of the next listed program in the batch file is 15 seconds,
unless this limit has been deactivated with the EXECTIMEOUT=0configurationcontrol.

Important:
If BATCHMODE=1take care that every program in your batch file which has a successor program
either exits (int21h Ox4C)or terminates resident with int21h 0x31.
A program which runs forever should call from the main function BIOS Interrupt
O0xAO Service 0x15, which immediately enables the further batch file sequencing.

Related Topics

BATCHMODE command
Run-time batch mode selection API

Top of list
Index page

BATCH

[BATCH]
EXECTIMEOUT=0/1

Disable/enable the batchfile DOS program execution delay time limit for BATCHMODE=1. By default the

maximum delay time for execution of the next listed program in a batch file is 15 seconds. If
EXECTIMEOUT is set to 0, the successor program in a batch file waits forever if the predecessor
program neither finishes nor calls OxAO Service 0x15 .

Comments

Example:

[BATCH|
EXECTI MEOUT=0

By default, EXECTIMEOUT is setto 1

Related Topics

BATCHMODE Configuration

Top of list
Index page

End of document

BELCK

Beck IPC GabH

CHIP.INI Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

CONFIG Updates

The following changes to the system configuration initialization are in the indicated BIOS revisions.

New in version 1.02B: Enable/Disable filesharing

New in version 1.02B: Select DMA send mode for a serial port

New in version 1.02B: Set Accessrights for FTP Users

New in version 1.02B: Set Username and Password for Web Put Method
New in version 1.02B: Reserve a memory gap between loaded programs
New in version 1.01B: Name of the users FTP server root directory

New in version 1.01B: Name of the users FTP server root directory

New in version 1.01B: Number of login retries

New in version 1.01B: Telnet login delay 0/1

New in version 1.01B: FTP login delay 0/1

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

Command Processor - BIOS V1.02 Beta

IPC@Chip Documentation Index

COMMAND

Command processor
Interprets the commands in aut oexec. bat and those issued at the console.

New in version 1.01B: Enable non-multiplexed address bus
New in version 1.01B: Enable PIO pins and show PIO state
New in version 1.00: Enable/Disable TFTP

New in version 1.00: Enable/disable address latch enable pin
New in version 1.00: Display TCPIP memory usage

New in version 0.69: ICMP echo command (ping)

New in version 0.69: Display list of all available commands
New in version 0.68: Set batch file execution mode

New in version 0.68: Restart the Ethernet interface

New in version 0.68: XMODEM file transfer

New in version 0.68: Enable chip select

New in version 0.67: Enable/disable memory optimization

DEL filename
. DIR filename
. TYPE file
. COPY filel file2
REN filel file2
. MD dir
. XTRANS
. MEMOPT 0/1
. CDdir
. RD dir
. CON
- IW
- 1B
. OW
B

©)

T
O

S

http://www.bcl.de/

>
m

L
D

I

. |IP address

. NETMASK mask

. GATEWAY address
. DHCP 0/1

. IPETH

. TCPIPMEM

. BATCHMODE

. FTP 0O/1

. TETP

. IPCFG

. REBOOT

. WAIT secs

. FORMAT A: [/C:n] [/E] [/R:n]
- VER

- MEM

. CGISTAT

. CLOSETELNET

. WEBSTAT

>
Py,

T

In the aut oexec. bat or any other batch file you can only list the internal commands
and the names of any program files on the flash drive. A batch file must have the file
extension . bat, e.g.t est . bat .

The commands are executed sequentially, with one difference to the 'normal’ DOS:
When the SC12's BATCHMODE is configured for concurrent batch file execution,
the next command is executed before a previous command has finished. The only
exceptions are the WAIT and REBOOT commands.

Please note that very little syntax checking is done.

DEL filename
Delete a file

Delete a file or all files that match the wildcard.
Example

del *.dat

Top of list

Index page

DIR filename
List a directory.

List the directory entry or all entries that match the wildcard.
Comments

If no argument is given, *.* is assumed.
Example

dir *.exe

Top of list
Index page

TYPE file
Type afile.

Show contents of a file on the console.

Top of list
Index page

COPY filel file2
Copy afile.

Copy a file. The two file specifiers must be complete file names.
Wildcards such as * or ? are not allowed.

Top of list
Index page

REN filel file2
Rename afile.

Rename a file. The two file specifiers must be complete file names.
Wildcards such as * or ? are not allowed.
Both files must reside in the same directory.

Top of list
Index page

MD dir
Creates a directory.

Creates a directory.
Example

md tenp

Top of list
Index page

XTRANS
File transfer: Send/Receive file with Xmodem.

Send/Receive file with XMODEM/CRC protocol. Possible devices are COM or EXT.
Example

XTRANS COM R chip.ini ;Receive chip.ini file over COM
XTRANS EXT S test.txt ;Send test.txt file over EXT

Top of list
Index page

MEMOPT 0/1
Disable or enable memory optimize when loading exe file.

Use MEMOPT 1 to optimize memory usage when loading an exe file.

By default, the memory optimization is disabled. An exe file will obtain almost all memory available at

startup. In the startup code, the program will then resize this memory.

When enabled, the program will obtain only the memory it defines as required in the header of the exe
file. This can leave more memory to other programs, but it can result in errors when allocating memory

from the heap.

Users of Borland C/C++ will probably not need this command. Only users of Borland Pascal might need

it since programs written in Pascal usually do not resize their memory at startup.

Comments

With SC12 BIOS version 0.67, the default for MEMOPT is disabled. Earlier versions had this feature

enabled but this resulted in errors with mal | oc() .

Example

MEMOPT O

Top of list
Index page

CD dir
Change the current working directory.

Changes the current working directory.
Example

cd tenp

Top of list
Index page

RD dir
Removes a directory.

Removes a directory. This command cannot be executed on directories containing data.
Example

rd tenp

Top of list
Index page

CON
Direct console 1/0O.

Define what device is used as the console. Possible devices are COM, EXT or TELNET. Multiple
devices are possible.

Comments

This setting is only valid until the next reboot.

Example

CON Cov
CON EXT
CON COM TELNET

Related Topics

Default input device STDIN initial value
Default output device STDOUT initial value

Top of list
Index page

W
Input word.

Perform a 16 bit input from a given address.
The address and the result are hexadecimal.

Example

| W600

Top of list
Index page

IB
Input byte.

Perform an 8 bit input from a given address.
The address and the result are hexadecimal.

Example

| B 600

Top of list
Index page

ow
Output word.

Perform a 16 bit output on a given address with given data.

The address and the data are hexadecimal. The address is the first
parameter followed by data.

Example

oW 600 F

Top of list
Index page

OB
Output byte.

Perform an 8 bit output on a given address with given data.
The address and the data are hexadecimal. The address is the first
parameter followed by data.

Example

oB 600 F

Top of list
Index page

PCS
Enable chip select.

Enables a chip select line.
The command expects only one parameter: the chip select line. Valid arguments are 0, 1, 2, 3, 5 or 6.

Example

PCS 6

Top of list
Index page

ALE
Enable/disable ALE pin.

Enables the address latch enable (ALE) pin.
The command expects only one parameter: 1 enable / O disable.

Example

ALE 1

Top of list
Index page

ADR
Enable non-multiplexed address bus pins.

Enables the non-multiplexed address bus pins (AO/A1/A2).
The command expects only one parameter: O=enable A0 / 1=enable Al / 2=enable A2

Example

ADR O

Top of list
Index page

PIO
Enable and show pio pins.

Enables the programmable pio pins (PIO0-13).
The command expects two parameters: PIO MODE

PIO: PIO number (0-13)
MODE: PIO mode
1 = Input without pullup/pulldown
2 = Input with pullup (not PIO13)
3 = Input with pulldown (only for PIO3 and PIO13)
4 = Output value = High
5 = Output value = Low

When no cmdline is given, the pio state is shown.
Example

PIO 3 5
PI O

Pi 03 Qutput | ow
Shows pi o states

Top of list
Index page

IP address
Sets the IP address.

Sets the IP address of this device.

Modifies the information stored in A: \ chi p. i ni

The DHCP option is also switched off.

The new address is only valid after a restart of the system.

Comments

Use the IPCFG command to verify your entry before restarting the system.

Example
| P 195. 243. 140. 85
Related Topics
IP address initial value
Set IP Address API function

PPP server initial IP address
Initial DHCP setting

Top of list
Index page

NETMASK mask
Set the network mask for IP addressing.

Sets the subnet mask for IP addressing.

Modifies the information stored in A: \ chi p. i ni

The DHCP option is also switched off.

The new subnet mask is only valid after a restart of the system.

Comments

Use the IPCFG command to verify your entry before restarting the system.

Example
NETMASK 255. 255. 255. 192
Related Topics

IP subnet mask initial value

Initial DHCP setting
Set IP subnet mask API function

Top of list
Index page

GATEWAY address
Define the IP address of the gateway

Sets the IP address of the gateway to use.

Modifies the information stored in A: \ chi p. i ni

The DHCP option is also switched off.

The new address is only valid after a restart of the system.

Comments

Use the IPCFG command to verify your entry before restarting the system.

Example
GATEWAY 195. 243. 140.1
Related Topics
IP GATEWAY initial value
Set gateway IP address API function

ADD DEFAULT GATEWAY API function
Initial DHCP setting

Top of list
Index page

DHCP 0/1
Enable/Disable DHCP.

Enables or disables the use of DHCP to obtain an IP configuration.
Comments

DHCP Means Dynamic Host Configuration Protocol.

Using a DHCP Server, the network administrator can define the IP configuration of the network, without
manually configuring each device on the network.

Network servers and some ISDN routers offer a DHCP server.

Example
dhcp 1

Related Topics

Initial DHCP setting

Top of list
Index page

IPETH
Restart the Ethernet interface

Restart the Ethernet interface, e.g. after changing the IP configuration,
without rebooting the system.

Comments

If the restart command prints an error message, check your IP parameters.
In most cases an invalid gateway IP address is the reason why the restart failed.
The errorcode 237 signals that a ethernet configuration was already in progress

Top of list
Index page

TCPIPMEM
Display TCPIP memory usage

Display TCPIP memory usage, the command shows the max. reserved memory for the TCPIP stack,
and the current used memory.

Top of list
Index page

BATCHMODE
Set batch file execution mode

Sets the batch file execution mode of DOS programs for either concurrent or sequential execution.
See BATCHMODE initialization documentation for details.

Example
BATCHMODE 1 ; Selects sequential batch file processi ng node
BATCHMODE O ; Selects concurrent batch file processi ng node

Related Topics

Initial BATCHMODE setting
Run-time batch mode selection API

Top of list
Index page

FTP 0/1
Enable/Disable FTP.

Enables or disables the start of the FTP server after a reboot.
The file chi p. i ni contains the new value for FTP enable to be applied after rebooting the system.

Example
FTP 1
Related Topics

Initial FTP ENABLE setting

Top of list
Index page

TFTP
Enable/Disable TFTP

Enables or disables filetransfers via TFTP server.
0 disables the server, 1 enables TFTP filetransfer.

Comments
By default the TFTP server is disabled to avoid security leaks.
Example

TFTP 1

Top of list
Index page

IPCFG
Display IP configuration of the Ethernet interface.

Display IP configuration: DHCP, IP address, network mask, default gateway, serial number and Ethernet
address.
The information shown may not be valid until after the system has restarted.

Comments

During a PPP session (client or server) the command ipcfg shows as the default gateway the defined
gateway (if any) from the PPP server section of the chip.ini file. After the PPP session, the old gateway
(if any) of the Ethernet interface will be restored.

Example

| PCFG

Top of list
Index page

REBOOT
Restart the system

Restarts the system.
First, the file system is closed, then the watchdog is configured to issue a reset.
Please note that the tasks are not informed of this restart !

Example

r eboot

Top of list
Index page

WAIT secs
Suspends the command interpreter.

Suspends execution of the command interpreter for the specified interval.
The time interval is defined in seconds.

Example

wait 1

Top of list
Index page

FORMAT A: [/C:n] [/E] [/R:n]
Format Flash disk A:.

Format flash disk A:.

All information on drive A: will be lost !

The cluster size parameter /C: is optional, a value of 2 is default on A:, value 4 on B..

If the /E parameter is specified, the data area will be filled with null-data.

With parameter /R you can select the number of root directory entries. Note: This must be a multiple of
16.

Comments

Make sure that other tasks do not access drive A: when formatting.
Important : If you use retentive operators, only format flash disk with default cluster size!!

Example

FORVAT A: /C.2 |E
FORVAT B: /C 4
FORVAT B: /R 256

Top of list
Index page

VER
BIOS Version.

Output the IPC@CHIP serial number, BIOS version and build date.

Top of list
Index page

MEM
Display memory map.

Displays a memory map, including the name of the task owning the memory.
Comments

The size indicated is the actual usable size.
One sector (16 bytes) is added for memory management.

Top of list
Index page

CGISTAT
List Installed CGI handlers.

This function will list all installed CGI handlers.
Related Topics

CGIl INSTALL API function

Top of list
Index page

CLOSETELNET
Closing current telnet session.

This function will finish the current telnet session.

Top of list
Index page

WEBSTAT
Show the current settings of the webserver

This function will show the current settings of the webservers
e.g. root directory, root drive,...., default start page.
See at config.htm Wbserver confi g the available chip.ini entries for the Webserver.

Top of list
Index page

PING
The ICMP echo request (ping)

Test the network connection with the ICMP command ping.
This command sends 4 ICMP echo requests (64 Bytes) to the remote host,
with an interval of 1 second and shows the results.

Example

PI NG 192. 168. 200. 10<nl >

Related Topics

PING_OPEN API function

Top of list
Index page

TASKS
Display list of tasks.

Displays a lists of all tasks, including the CPU load caused by the task, the task status and the stack
space usage.

Sample output:

task 1094 count 3515 MTSK prio= 12 stack=3000 used=35% state=0

task 1606 count 81 ETHO prio= 5 stack=2048 used=41% state=4

task 256 count 4568 AMXK prio=0

task 2374 count 1072 WEBS prio= 41 stack=2048 used=24% state=81

task 2886 count 100 DOS1 prio= 25 stack=128 used=78% state=81

task 3142 count 157 DOS2 prio= 25 stack=128 used=78% state=81

task 1862 count 24 CFGS prio= 7 stack=1400 used=28% state=4
At every one millisecond clock tick, the count for the active task is increased by one. After 10 seconds,
the counters are copied and reset to zero.

Comments

At the first call of TASKS, the timer interrupt routine of the RTOS is exchanged by a version for the task
monitor. Only after 10 seconds will the TASKS command return usable results.
The command shows for DOS applications only a task stack size of 128 Byte,
since the DOS program at run time switches to its own internal stack which is
is not visible to the Kernel.
A maximum of 35 tasks can by monitored.
Please be aware that using TASKS has a performance penalty. Use UTASKS to
shut off the task monitoring.
The printed task state is only a one moment snapshot.
Task states (16Bit hex value):

BitO timer wait (used with other bits)

Bitl trigger wait (i.e. idle)

Bit2 semaphore wait

Bit3 event group wait

Bit4 message exchange wait

Bit5 message send wait

Bit6 suspended (waiting for resume)
Bit7 waiting for wake

Bit7-15 internal use only

Current running system tasks (if not disabled in chi p. i ni)

Very high priority:

AMXK prio= 00 Kernel task

ETHO prio= 05 Ethernet receiver task
Normal:

PPPS prio= 06 PPP server

TCPT prio= 06 TCPIP timer task

CFGS prio= 07 UDP config server

TELN prio= 11 Telnet server

MTSK prio= 12 Console task (command shell)
Low priority:

WEBS prio= 41 Web server

FTPS prio= 41 FTP server

Top of list
Index page

HELP
Display list of all console commands.

Displays a list of all available console commands.

Top of list
Index page

End of document

BELCK

Beck IPC GabH

TCP/IP Application Programmer's Interface - BIOS V1.02 Beta

IPC@Chip Documentation Index TCP/IP API News

TCP/IP API

Here is the TCP/IP Socket-Interface definition for the IPC@Chip. The TCP/IP API are all
reached though interrupt OXAC. The desired service is selected with the high order byte

of the AX register (AH). This interface provides access to the TCP/IP stack of the IPC@Chip
for programming TCP/IP applications.

Please note, that we cannot explain the whole functionality of the TCP/IP protocol and the working of the socket
interface at this document.Good books for understanding TCP/IP and the socket interface are e.g.:
1.Internetworking with TCP/IP, Volume 1-3 from Douglas E.Comer

2.TCP/IP lllustrated, Volume 1 from W. Richard Stevens

All needed constants and data structures are defined in the header file tcpipapi.h
The service selection indexes passed to the TCP/IP API interrupt OXAC in register AH
(e.g. API_OPENSOCKET) are defined in this header file.

TCP/IP APl News

TCP/IP API Error Codes Listing
TCP/IP API Developer Notes

TCP/IP API Data Structures

TCP/IP API Client/Server applications

Notes :

. "Network byte order” is big endian (like Motorola machines, unlike Intel).
. At return of most API the DX-Register is used for error checking:

DX: =0 =API_ENOERROR ==>success

DX: =-1=API_ERROR ==>error, AX contains error code

APl Functions :

Interrupt OXAC_function 0x01: API_OPENSOCKET, open a socket
Interrupt OXAC function 0x02: APl _CLOSESOCKET, close a socket
. Interrupt OXAC function 0x03: API BIND, bind TCP or UDP server socket
. Interrupt OxAC function 0x04: APl CONNECT, connect to another socket

http://www.bcl.de/

Interrupt OXAC

function

0x05:

APl RECVFROM, receive message

Interrupt OXAC

function

0x06:

APl SENDTO, transmit a datagram

Interrupt OxAC

function

0x07:

APl HTONS, convert byte order

Interrupt OxAC

function

0x08:

APl INETADDR, convert an IP-String

Interrupt OXAC

function

0x09:

APl SLEEP, sleep

Interrupt OXAC

function

0Ox0A:

APl MALLOC, alloc a buffer

Interrupt OXAC

function

0x0B:

APl FREE, free an allocated buffer

Interrupt OxAC

function

0x0C:

APl GETRCV BYTES, get waiting bytes count

Interrupt OxAC

function

0x0D:

APl ACCEPT, accept the next incoming connection

Interrupt OXAC

function

OxOE:

APl LISTEN, listening for incoming connections

Interrupt OXAC

function

OxO0F:

APl SEND, transmit a message

Interrupt OXAC

function

0x10:

APl RECV, receive message

Interrupt OxAC

function

0Ox11:

APl INETTOASCII, convert an IP address to an IP string

Interrupt OxXAC

function

0x12:

APl RESETCONNECTION, abort a connection on a socket

Interrupt OXAC

function

0x13:

APl SETLINGER, set linger time on close

Interrupt OXAC

function

0x14:

APl SETREUSE, set reuse option on a listening socket

Interrupt OXAC

function

0x15:

API_SETIPTOS, set IP Type-OF-Service

Interrupt OxAC

function

0x16:

APl SETSOCKOPT, set options on socket

Interrupt OxXAC

function

0x17:

APl GETSOCKOPT, get options on socket

Interrupt OXAC

function

0x18:

APl SETBLOCKINGMODE, set socket mode

Interrupt OXAC

function

0x19:

APl REGISTERCALLBACK, reqgister an user callback function

Interrupt OxAC

function

0x20:

APl REGISTERCALLBACK PASCAL, reqgister a pascal user

callback function.

Interrupt OXAC

function

0x21:

APl GET SOCKET ERROR, get last socket error.

Interrupt OXAC

function

0x40:

PPPCLIENT INSTALLED, check if PPP client installed.

Interrupt OxAC

function

0x41:

PPPCLIENT OPEN, open a PPP connection

Interrupt OxAC

function

0x42:

PPPCLIENT CLOSE, closing a ppp client connection

Interrupt OxAC

function

0x43:

PPPCLIENT GET STATUS, get PPP client status

Interrupt OXAC

function

0x50:

PPPSERVER INSTALLED, check if PPP server installed

Interrupt OXAC

function

0x51:

PPPSERVER SUSPEND, suspend PPP server task

Interrupt OxAC

function

0x52:

PPPSERVER ACTIVATE, activate PPP server

Interrupt OxAC

function

0x53:

PPPSERVER_GET_STATUS

Interrupt OxXAC

function

0x54:

PPPSERVER_GET_CFG

Interrupt OXAC

function

0x60:

Get internal TCPIP SNMP variables

Interrupt OXAC

function

0x65:

Get login counters of the FTP server

Interrupt OxAC

function

0x66:

Get login counters of the Telnet server

Interrupt OxAC

function

0x67:

Get the state of the telnet server

Interrupt OxXAC

function

0x70:

GET INSTALLED SERVERS and interfaces

Interrupt OXAC

function

Ox71:

RECONFIG ETHERNET, Reconfigure Ethernet interface

Interrupt OXAC

function

0Ox72:

DHCP USE, Set/Reset DHCP usage of the Ethernet interface

Interrupt OxAC

function

0x73:

DHCP STAT, Get DHCP status of the Ethernet interface

Interrupt OXAC

function

0x74:

TCPIP STATISTICS, Get access to the internal network packet

counter
Interrupt OXAC

function

0Ox75:

PING OPEN, open and start ICMP echo requests

Interrupt OxAC

function

0x76:

PING CLOSE, finish ICMP echo requests

Interrupt OxAC

function

Ox77:

PING STATISTICS, retrieve ping information

Interrupt OXAC

function

0x78:

GETMEMORY INFO, get information about TCP/IP stack memory

usage
Interrupt OxAC

function

0x79:

SET_SERVER_IDLE_TIMEOUT

. Interrupt OxAC

function

0x80:

ADD DEFAULT GATEWAY, add the default gateway

. Interrupt OxXAC

function

0x81:

DEL DEFAULT GATEWAY, delete the default gateway

Interrupt OxAC

function

0x82:

GET DEFAULT GATEWAY, get the current default gateway

Interrupt OxAC

function

0x83:

ADD STATIC ROUTE, add a route for a interface

Interrupt OXAC

function

0x84:

DEL STATIC ROUTE, delete a route for an interface

. Interrupt OxXAC

function

0x90:

ADD IGMP MEMBERSHIP, Install an IP multicast address entry

. Interrupt OXAC

function

0x91:

DROP IGMP MEMBERSHIP, Delete an IP multicast address entry

Interrupt OxAC

function

0x92:

MCASTIP TO MACADDR, Map IP multicast address to ethernet

address

Interrupt OXAC service 0x01: API_OPENSOCKET, open a socket

Creates an endpoint for communication and returns a socket descriptor (i.e. a handle).
This function provides the BSD socket() functionality.

Parameters

AH

0x01 (= AP|_OPENSOCKET)

AL
type of socket :

AL = 1 (= SOCK_STREAM) ==> TCP
AL = 2 (= SOCK_DGRAM) ==> UDP

Return Value

DX=0 success AX: socket descriptor
DX!=0 AX: contains error code

Related Topics

Close socket APl CLOSESOCKET
TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x02: API_CLOSESOCKET, close a socket

Closes the socket indicated by BX and releases all of its associated resources.

Parameters

AH

0x02 (= API_CLOSESOCKET)

BX
Socket descriptor

Return Value

DX=0 success AX: 0
DX=-1=API_ ERROR AX: contains error code

Related Topics

Open socket API_ OPENSOCKET
TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x03: API_BIND, bind TCP or UDP server socket

Bind a unnamed socket with an address and port number.

Parameters

AH
0x03 (= API_BIND)

BX
Socket descriptor

DX:SI
Pointer to a sockaddr _i n structure (see tcpipapi.h)

Return Value

DX=0 success AX: 0
DX!=0 AX: contains error code

Comments

The sockaddr _i n structure at [DX:SI] must be filled in by the caller prior to making this API call.

It is only necessary to use the bind call in server applications.

The older TCP and UDP echo client examples also uses a bind call, but this was not necessary.

If you use the bind call in a client application, the client uses the given port number as its

own source port address. Otherwise a random 16-bit source port number will be used when no bind call
is made.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x04: API_CONNECT, connect to another socket

TCP only, The connect call attempts to make a connection to another
socket (either local or remote). This call is used by a TCP client

Parameters

AH
0x04 (= API_CONNECT)

BX
Socket descriptor

DX:SI
Pointer to a sockaddr _i n structure containing host's IP address and port number.

Return Value

DX=0 success AX: 0
DX!=0 AX: contains error code

Comments
The caller must fill in the sockaddr _i n data structure at [DX:Sl] prior to calling here.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x05: API_RECVFROM, receive message

UDP only, receive message from another socket

Parameters

AH
0x05 (= AP|_RECVFROM)

BX
Socket descriptor

DX:SlI
Pointer to a recv_params data structure (tcpipapi.h)

Return Value

DX=0 success AX: number of received bytes 0 bytes -> timeout
DX!=0 AX: contains error code

Comments

The caller must fill in the r ecv_par ans data structure at [DX:Sl] prior to calling here.

This function will output up to r ecv_par ans. buf f er Lengt h bytes to the buffer
referenced by r ecv_par ans. buf f er Pt r pointer. The return value indicates the
number of byte put into the buffer.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x06: API_SENDTO, transmit a datagram

UDP only, transmit message to another transport end-point

Parameters

AH
0x06 (= API_SENDTO)

BX
Socket descriptor

DX:SI
Pointer to a send_par ans structure (see tcpipapi.h)

Return Value

DX=0 success AX: number of bytes sent
DX!=0 AX: contains error code

Comments

The caller must fill in the send_par ans data structure at [DX:Sl] prior to calling here.

This function will output up to send_par ans. buf f er Lengt h bytes from the buffer
atsend_par ans. buf f er Pt r to the IP address specified by the sockaddr _i n structure

referenced by the send_par ans. t oPt r pointer. The return value indicates the actual
number of bytes sent.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x07: API_HTONS, convert byte order

Converts a short (16 bit) value from host byte order to network byte order.
This is used to convert port numbers; e.g. htons(7)

Parameters

AH
0x07 (= AP|_HTONS)

BX
short value

Return Value

DX=0, AX contains converted value

Top of list
Index page

Interrupt OXAC service 0x08: API_INETADDR, convert an IP-String
Converts a dotted decimal IP address string to an unsigned long.
Parameters

AH
0x08 (= API_INETADDR)

BX:SI
Pointer to the ip dotted decimal string set by caller.

ES:DI
Pointer to a 32 bit unsigned long variable, where this function outputs the converted IP address value.

Return Value

DX =0 [ES:DI] contains converted value
DX!=0 syntax error

Top of list
Index page

Interrupt OXAC service 0x09: API_SLEEP, sleep
The application sleeps for given number of milliseconds
Parameters

AH
0x09 (= API_SLEEP)

BX
milliseconds

Return Value
DX=0
Comments

This call is identical with the RTOS API call RTX SLEEP TIME . At our earliest BIOS version we had no

RTS API, so we provide this call at the TCPIP API. We do not remove this call from the TCPIP API
because of compatibility with older BIOS versions.

Top of list
Index page

Interrupt OXAC service OxOA: API_MALLOC, alloc a buffer

Memory allocator

Parameters

AH
OXO0A (= API_MALLOC)

BX
size in bytes

Return Value

DX =0 ES:DI points to the allocated buffer
DX!=0 allocation error, ES:Dl is a NULL-Pointer

Top of list
Index page

Interrupt OXAC service 0xOB: API_FREE, free an allocated buffer
Releases a block of allocated memory.
Parameters

AH
OXOB (= AP|_FREE)

DX:SI
Pointer to the buffer

Return Value

DX =0 success
DX!=0 free failed

Top of list
Index page

Interrupt OXAC service 0xOC: API_GETRCV_BYTES, get waiting bytes count
Get the number of bytes on a socket, waiting for read.
Parameters

AH
0XOC (= API_GETRCV_BYTES)

BX
socket descriptor

Return Value

DX =0 success, AX contains the number of bytes ready
DX!=0 failed, AX contains error code

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0xOD: API_ACCEPT, accept the next incoming connection

Accept extracts the first connection on the queue of pending connections
(from API_LISTEN) and creates a new socket for this connection.
This call is used by a TCP server.

Parameters

AH
0XOD (= API_ACCEPT)

BX
Socket descriptor from API_LISTEN call

DX:SI
Pointer to a sockaddr _i n structure (see tcpipapi.h)

Return Value

DX =0 success, AX: contains new socket descriptor for the connection
DX!=0 failure, AX: contains error code

Comments

On success, this function fills in the sockaddr _i n structure at [DX:Sl] with the IP address and port
number of the accepted connection.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service OxOE: API_LISTEN, listening for incoming connections

Place the socket in passive mode and set the number of incoming TCP
connections the system will queue. This call is used by a TCP server.

Parameters

AH
OXOE (= API_LISTEN)

BX
Socket descriptor

CX
The maximum number (limited to 5) of allowed outstanding connections

Return Value

DX =0 success, AX:0
DX!=0 failure, AX: contains error code

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service OxOF: API_SEND, transmit a message

TCP only, transmit message to another transport end-point.
API_SEND may be used only if the socket is in a connected state.

Parameters

AH
OXOF (= API_SEND)

BX
Socket descriptor

DX:SI
Pointer to a send_par ans structure (see tcpipapi.h)

Return Value

DX =0 success, AX: number of bytes sent
DX!=0 failure, AX: contains error code

Comments

The caller must fill in the send_par ans structure prior to calling here.

On success, the return value in AX contains the number of bytes
which are successfully inserted into the socket send queue.

Related Topics

TCP/IP API Error Codes

Developer Notes

Since BIOS 1.00 the MSG_DONTWAIT flag option at the struct send_params is enabled

for the API_SEND and API_RECYV function. If flag is set to MSG_DONTWAIT the send call

returns immediatley. As much data as can fit into internal TCP buffer is being sent

and the length of the sent data is returned at AX. If none of the data fits then -1

is returned at DX and errorcode 235 at AX.

If flag is set to MSG_BLOCKING, the send call blocks until enough internal buffer space

is available or socket error occurs.By default the blocking mode is set to all sockets at the open call.
If a socket will be set to non blocking with the API_SETBLOCKINGMODE function, the
MSG_BLOCKING flag will not work,the call is still non blocking.

Top of list
Index page

Interrupt OXAC service 0x10: API_RECV, receive message

TCP only, receive message from another socket.
API_RECV may only be used when the socket is in a connected state.

Parameters

AH
0x10 (= API_RECV)

BX
Socket Descriptor

DX:SlI
Pointer to r ecv_par ans structure (see tcpipapi.h)

Return Value

DX =0 success, AX: number of received bytes; 0 bytes -> timeout
DX!=0 failure, AX: contains error code

Comments

The caller must fill in the r ecv_par ans structure prior to calling here.

On success, the return value in AX contains the number of bytes which were
successfully inserted into the caller's receive buffer atr ecv_par ans. bufferPtr.

If member flag of struct recv_params is set to MSG_DONTWAIT the recv call returns immediatley.
If no data is available -1 is returned at DX and errorcode 235 at AX. If flag is set

to MSG_BLOCKING, the recv call waits for a message to arrive.

By default the blocking mode is set to all sockets at the open call. If a socket was set to

non blocking with the API_SETBLOCKINGMODE function, the MSG_BLOCKING flag will not work,
the call is still non blocking.

Related Topics
TCP/IP API Error Codes

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x11: API_INETTOASCII, convert an IP address to an IP string

Converts an unsigned long IP address to a dotted decimal IP string

Parameters

AH
0x11 (= API_INETTOASCII)

BX:SI
Pointer to the 32 bit IP address in network byte order

ES:DI
Pointer to the string buffer, where this function can fill in the converted value.
This buffer must have space for 17 Bytes!

Return Value

DX=0 [ES:DI] buffer contains converted string value

Top of list
Index page

Interrupt OXAC service 0x12: API_RESETCONNECTION, abort a connection on a socket
Works only with TCP sockets.
Parameters

AH
0x12 (= API_RESETCONNECTION)

BX
Socket descriptor

Return Value

DX =0 success
DX!=0 failure, AX: contains error code

Comments

Note: API_RESETCONNECTION doesn't close the socket, this must be done with API_CLOSESOCKET
The Reseted Socket can not be used for a new connection. You have to close the socket and open a
new one for a different connection.

Related Topics

TCP/IP API Error Codes
Close socket APl CLOSESOCKET

Top of list
Index page

Interrupt OXAC service 0x13: API_SETLINGER, set linger time on close

Works only with TCP sockets

Parameters

AH
0x13 (= API_SETLINGER)

BX
Socket descriptor

CX
Linger time in seconds, default: 60 sec, 0 means linger turned off.

Return Value

DX =0 success
DX!=0 failure, AX: contains error code

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x14: API_SETREUSE, set reuse option on a listening socket

Works only with TCP sockets, this is necessary, if a listening socket
was closed and will be open and bind on the same port as it was bound
to before (see example TCPservm.c)

Parameters

AH
0x14 (= API_SETREUSE)

BX
Socket descriptor

Return Value

DX =0 success
DX!=0 failure, AX: contains error code

Related Topics

TCP/IP API Error Codes

Developer Notes

Since BIOS 071, we set every TCP socket at the open call as a default reusable, so now it is not
for further use of this function.

Top of list
Index page

Interrupt OXAC service 0x15: API_SETIPTOS, set IP Type-OF-Service

Set socket's default Type-OF-Service put into the IP datagram header's TOS field.

Parameters

AH
0x15 (= APl_SETIPTOS)

AL
Type-OF-Service for IP datagrams

BX
Socket descriptor

Return Value

DX =0 success
DX!=0 failure, AX: contains error code

Comments

Bits in the IP Type-OF-Service field of a IP datagram:
Bits 0-2: Datagram precedence, 7 is the highest.
Bits 3-5: type of transport, see TCP/IP documentation e.g.
Internet networking with TCP/IP by Douglas E.Comer
Bits 6-7: unused

Note: Many routers ignore this IP datagram header field.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x16: API_SETSOCKOPT, set options on socket
Set options on a socket
Parameters

AH
0x16 (= AP|_SETSOCKOPT)

BX
Socket descriptor

ES:DI
Pointer to Set Socket Opt i on type that specifies the socket options (see tcpipapi.h)

Return Value

DX=0 success
DX!=0 AX: contains error code

Comments

This API function makes it possible to manipulate options associated with a socket.
Prior to calling this function the caller must fill in a Set Socket Opt i on type data structure.

See Set Socket Opt i on type definition for example usage of this API function.

Related Topics

Get Socket Opt i on typedef with option names
API_GETSOCKOPT - Get socket options
TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x17: API_GETSOCKOPT, get options on socket

Get options on a socket

Parameters

AH
0x17 (= AP|_GETSOCKOPT)

BX
Socket descriptor

ES:DI
Pointer to Get Socket Opt i on type (see tcpipapi.h) data structure.

Return Value

DX =0 success, Buffer pointed to by the opt i onVal ue member of Get Socket Opt i on type at [ES:DI]
contains the requested socket option value.
DX!=0 failure, AX: contains error code

Comments
This API function makes it possible to read options associated with a socket.

Prior to calling this function the caller must fill in a Get Socket Opt i on type data structure.
The user must set the pr ot ocol _I evel and opt i onName members.

Also the pointer opt i onVal ue must point to a valid buffer in the user application's
memory. The correct length of the buffer must be specified in opt i onLengt h .

Related Topics

Get Socket Opt i on typedef with option names
APl _SETSOCKOPT - Set socket options
TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x18: API_SETBLOCKINGMODE, set socket mode

Set a socket in blocking or non-blocking mode

Parameters

AH
0x18 (= API_SETBLOCKINGMODE)

AL
0: switch blocking off, 1:switch blocking on

BX
Socket descriptor

Return Value

DX =0 success
DX!=0 failure, AX: contains error code

Comments

By default all sockets are in blocking mode. If a socket is set to non blocking mode,

socket calls like CONNECT, ACCEPT, ... do not wait until full completion, they return immediateley.
Example for usage: The connect call returns at a non blocking socket with -1 at DX and the errorcode
236, if

the connection was not completed. The user could call connect at a loop and wait active for completion
or exit.

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x19: API_REGISTERCALLBACK, register an user callback
function

Register a user callback function for occuring events on a TCP socket
The TCP/IP stack of the IPC@Chip is able to execute a registered user callback function,
if one or more some specified events happens on a TCP socket connection.

Parameters

AH
0x19 (= API_REGISTERCALLBACK)

BX

Socket descriptor
CX

Event flag mask (see below)
ES:DI

Pointer to callback function (see below)

Return Value

DX=0 success
DX!=0 AX: contains error code

Comments

The callback function must be from the follwing type (Borlandc):

voi d huge socket Cal | BackFunc(i nt socketdescriptor, int eventFl ags)
Before closing a socket, you should remove the callback function. You must call

again this API function with a null pointer at es:di and value O at register cx

The parameter eventFlags contains the event(s) that have occured.

Possible event flags (also defined at TCPIPAPI.H):

#define CB_CONNECT_COMPLT 0x0001 //connection complete

#define CB_ACCEPT 0x0002 //remote has establ. a connection to our listening server
#define CB_RECV 0x0004 //incoming data arrived

#define CB_SEND_ COMPLT 0x0010 //sending of data has been acked by the peer
#define CB_REMOTE_CLOSE 0x0020 //peer has shutdown the connection

#define CB_SOCKET_ERROR 0x0040 //an error occured on the connection

#define CB_RESET 0x0080 //peer has sent a rest on the connection

#define CB_CLOSE_COMPLT 0x0100 //close has been completed

Top of list
Index page

Interrupt OXAC service 0x20: API_REGISTERCALLBACK_ PASCAL, register a pascal user
callback function.

Register a user callback function written in Pascal for occuring events on a TCP socket
The count of Pascal TCP callback functions are limited to 10.
See also API_REGISTERCALLBACK (0x19)

Parameters

AH
0x20 (= API_REGISTERCALLBACK_PASCAL)

BX

Socket descriptor
CX

Event flag mask (see below)
ES:DI

Pointer to callback function (see below)
Return Value

DX=0 success
DX!=0 AX: contains error code

Comments

The first what you have to do in the callback function is to read the pointer to the PacCallBack record

from ES:DI.
The callback function must be implemeneted as the followong description (Borland Pascal):
procedur e socket Cal | BackFunc; interrupt;
var
ESReg : I nteger;
Dl Reg : I nteger;

CBPar anPt r . Cal | BackParanPtr;
begi n

(*********************************)
(* Required to get the Paraneter *)
asm

nov ax, es

nmov ESReg, ax

nmov ax, di

nmov Dl Reg, ax

end;
(***~k~k***~k************************)

[... your code ...]

end;

Before closing a socket, you should remove the callback function. You must call
again this API function with a null pointer at es:di and value 0 at register cx

The parameter eventFlags contains the event(s) that have occured.

Possible event flags:

const
CB_CONNECT_COMPLT = $0001;
CB_ACCEPT = $0002;
CB_RECV = $0004;
CB_SEND_COMPLT = $0010;
CB_REMOTE_CLOSE = $0020;
CB_SOCKET_ERROR = $0040;
CB_RESET = $0080;
CB_CLOSE_COMPLT = $0100;

Top of list
Index page

Interrupt OXAC service 0x21: API_GET_SOCKET_ERROR, get last socket error.

Returns the last error which occured in the socket in register bx.

Parameters

AH
0x21 (= AP|_GET_SOCKET_ERROR)

BX
Socket descriptor

Return Value
DX =0: success AX: contains last socket error code
Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x40: PPPCLIENT_INSTALLED, check if PPP client installed.
Tests if PPP client services are available in BIOS version.
Parameters

AH
0x40 (= PPPCLIENT_INSTALLED)

Return Value

AX =0: PPP client is not installed
AX!=0: PPP client is installed

Top of list
Index page

Interrupt OXAC service 0x41: PPPCLIENT_OPEN, open a PPP connection
Open a PPP connection
Parameters

AH
0x41 (= PPPCLIENT_OPEN)

ES:DI
Pointer to a PPPCl i ent _| ni t type data structure (declared at tcpipapi.h)

Return Value

DX:0 AX:0, success [ES:DI] contains the needed IP data for further TCP/IP socket communication
DX:-1 AX: contains error code, open failed

Comments

Refer to the PPPCLIE.C example for how to use this API. Also refer to the
PPPCl i ent _I nit type data structure documentation.

Note: Only one ppp client connection can be open at a time!!
Related Topics

PPP Client Error Codes

Top of list
Index page

Interrupt OXAC service 0x42: PPPCLIENT_CLOSE, closing a ppp client connection
Parameters

AH
0x42 (= PPPCLIENT_CLOSE)

Return Value

DX:0, AX =0: PPP client connection is closed
DX:-1,AX contains error code, Connection closed timed out

Comments

At the close call the PPP client also executes after closing the PPP session the modem hangup
commands from the struct PPPCl i ent _| ni t type defined at the PPPCLIENT_OPEN call (see above).

Related Topics

PPP Client Error Codes

Top of list
Index page

Interrupt OXAC service 0x43: PPPCLIENT_GET_STATUS, get PPP client status
Parameters

AH

0x43 (= PPPCLIENT_GET_STATUS)
Return Value

AX =-2 (=API_NOT_SUPPORTED), DX=-2: PPP client is not installed
AX =-1 (=API_ERROR), DX= PPP client status
AX >= 0, then AX = PPP client status, DX unchanged

Related Topics

PPP Client Status

Top of list
Index page

Interrupt OXAC service 0x50: PPPSERVER_INSTALLED, check if PPP server installed
Test if PPP server is installed.
Parameters

AH
0x50 (= PPPSERVER_INSTALLED)

Return Value

AX =0: PPP server is not installed
AX!=0: PPP server is installed

Top of list
Index page

Interrupt OXAC service 0x51: PPPSERVER_SUSPEND, suspend PPP server task
Suspend the PPP server task
Parameters

AH
0x51 (= PPPSERVER_SUSPEND)

BX
Timeout seconds

Return Value

AX =0, DX=0 PPP server is suspended
AX!=0, DX!=0 Suspending PPP server failed, PPP server is not installed or timeout

Comments

Note, that the timeout value at bx depends on your timeout entries for the modemcommands
at chip.ini. If this call returns with -1 at AX and DX, the most reason is that the modem commands
are not finished after the timeout of bx.

Related Topics

PPPSERVER HANGUPTIMEOUTX timeout in seconds for wait on answer from modem

Top of list
Index page

Interrupt OXAC service 0x52: PPPSERVER_ACTIVATE, activate PPP server
The PPP server is now able to serve a connection
Parameters

AH
0x52 (= PPPSERVER_ACTIVATE)

BX
Timeout seconds

Return Value

AX =0, DX=0 PPP server is activated
AX!=0, DX!=0 Activating PPP server failed, PPP server is not installed or timeout

Comments

Note, that the timeout value at bx depends on your timeout entries for the modemcommands
at chip.ini. If this call returns with -1 at AX and DX, the most reason is that the modem commands
are not finished after the timeout of bx.

Related Topics

PPPSERVER HANGUPTIMEOUTXx timeout in seconds for wait on answer from modem

Top of list
Index page

Interrupt OXAC service 0x53: PPPSERVER_GET_STATUS

Get the current state of the PPP server

Parameters

AH
0x53 (= PPPSERVER_GET_STATUS)

Return Value

DX!=0 PPP server is not installed
DX=0 AX contains the current PPP server state

Comments

PPP server states:
-1 Error state, should not happen
01 Server disabled
02 Server enabled, waiting for connection
03 PPP connection is established
04 Server tries to hang up modem
05 Server tries to initialize modem

Top of list
Index page

Interrupt OXAC service 0x54: PPPSERVER_GET_CFG
Get the current main configuration data of the PPP server
Parameters

AH
0x54 (= PPPSERVER_GET_CFG)

ES:DI
Pointer to PPP_| PCf g_Dat a type data structure which will be output to by this function.

Return Value

DX!=0 AX!=0 :PPP server is not installed
DX =0 The user structure PPP_I| PCf g_Dat a (at ES:DI) is filled with the PPP server configuration data

Related Topics

PPP_IPCfg_Data type definition

Top of list
Index page

Interrupt OXAC service 0x60: Get internal TCPIP SNMP variables

Accessing the defined MIB structures inside of the BIOS TCPIP stack

Parameters

AH
0x60 (= API_SNMP_GET)

AL
1 Get pointer to IfMib data structure

2 Get pointer to [pMib data structure

3 Get pointer to IcmpMib data structure
4 Get pointer to TcpMib data structure

5 Get pointer to UdpMib data structure
6 Get pointer to atEntry data structure

Return Value

DX!=0 AX!=0 : BIOS with out internal SNMP mib variables
DX = AX = 0 ES:DI contains a pointer to the structure

Comments

Note: These structures are only available at BIOS versions, which contain the

SNMP option. A SNMP agent is not part of the BIOS. But if an user is able to implement

an agent based on the TCPIP API, he needs access to the internal TCPIP SNMP variables

The SNMP varialbes are not a part of our current official 6 BIOS versions. You must order direct a BIOS

version, which includes this feature.

Developer Notes

The access to struct tag_atEntry is currently not supported.

Top of list
Index page

Interrupt OXAC service 0x65: Get login counters of the FTP server

Accessing the FTP server login counters

Parameters

AH
0x65 (= API_FTP_GET_LOGIN)

Return Value

DX!=0 AX!=0 : BIOS doesn't support FTP server

DX=AX=0

ES:DI contains the address of the 32 Bit (unsigned long) login counter
DS:Sl contains the address of the 32 Bit (unsigned long) login fail counter

Top of list
Index page

Interrupt OXAC service 0x66: Get login counters of the Telnet server

Accessing the Telnet server login counters

Parameters

AH
0x66 (= API_TELNET_GET_LOGIN)

Return Value

DX!=0 AX!=0 : BIOS doesn't support Telnet server

DX=AX=0

ES:DI contains the address of the 32 Bit (unsigned long) login counter
DS:SI contains the address of the 32 Bit (unsigned long) login fail counter

Top of list
Index page

Interrupt OXAC service 0x67: Get the state of the telnet server
Check, if the telnet server handles a active telnet session
Parameters

AH
0x67 (= API_GET_TELNET_STATE)

Return Value

DX==-1 AX==-1: BIOS doesn't support Telnet server
DX = 0 AX =1 Telnet session is active
DX =0 AX = 0 no telnet session

Top of list
Index page

Interrupt OXAC service 0x70: GET_INSTALLED_SERVERS and interfaces
Get information about running servers and interfaces of the IPC@Chip TCP/IP Stack
Parameters

AH
0x70 (= GET_INSTALLED_SERVERS)

Return Value

Bits of AX and DX contains the asked information
Bit=0 service or device is not available.
Bit=1 service or device is available.

AX:
Bit 0: Ethernet device
Bit 1: PPP server
Bit 2: PPP client
Bit 3: Web server
Bit 4: Telnet server
Bit 5: FTP server
Bit 6: TFTP server
Bit 7: DHCP client
DX:
Bit 0: SNMP MIB variables support
Bit 1: UDP Config server
Bit 2: Ping client
Top of list
Index page

Interrupt OXAC service 0x71: RECONFIG_ETHERNET, Reconfigure Ethernet interface

Reconfigure Ethernet interface e.g. after changing the IP configuration

Parameters

AH
0x71 (= RECONFIG_ETHERNET)

Return Value

AX:0 success
else restart failed, should not happen, the errorcode 237 signals
that a ethernet interface configuration was already in progress.

Comments

A new IP configuration set with the prompt commands i p, net mask and gat eway
(or the corresponding BIOS API calls) becomes valid after a successful call to this function.

If DHCP is changed from 1 to 0 then a new IP address, subnet mask and gateway should be set
with the prompt commands i p, net nask and gat eway or with the BIOS API interrupt OXAO

services 0x02 , 0x04 , 0x06 before using this function.

Top of list
Index page

Interrupt OXAC service 0x72: DHCP_USE, Set/Reset DHCP usage of the Ethernet interface
Set/Reset DHCP usage of the Ethernet interface
Parameters

AH
0x72 (= DHCP_USE)

AL
0: DHCP not used, 1:DHCP_USE

Return Value
AX:0
Comments

This entry becomes valid only after rebooting the system or after calling function Ox71 .

If DHCP is changed from 1 to O then a new IP address, subnet mask and gateway should be set
with the prompt commands i p, net mask and gat eway or with the BIOS API interrupt 0xAO

services 0x02 , 0x04 , 0x06 .

Top of list
Index page

Interrupt OXAC service 0x73: DHCP_STAT, Get DHCP status of the Ethernet interface
Get DHCP status of the Ethernet interface
Parameters

AH
0x73 (= DHCP_STAT)

Return Value

AX: 1 System uses DHCP, AX:0 DHCP is not used
DX: 1 System is configured by a DHCP Server, DX:0 System is not configured

Top of list
Index page

Interrupt OXAC service 0x74: TCPIP_STATISTICS, Get access to the internal network
packet counter

This function returns the address of a structure which contains pointers to network packet counters.
Parameters

AH
0x74 (= TCPIP_STATISTICS)

Return Value

AX: 0, DX:0
ES:DI contains a pointer to the Packet _Count structure

Comments

Note: The counters count _al | _packet s and count _al | _sended packet s count only Ethernet
packets.
Other counters also count the packets from and to other devices e.g. local loopback packets and PPP
packets.

The user is free to read and/or reset these counters.

Related Topics

Packet Count structure type definition

Top of list
Index page

Interrupt OXAC service 0x75: PING_OPEN, open and start ICMP echo requests
This function opens and starts periodic ICMP echo request (ping) to a given remote host
Parameters

AH
0x75 (= PING_OPEN)

ES:DI
Pointer to user's Pi ng structure

Return Value

DX:-1, AX contains error code, Ping open failed
else
DX:socket descriptor, AX:0

Comments
Note: This API will send ICMP packets forever, unless you call PING_CLOSE.
Related Topics

Pi ng structure type definition
PING_CLOSE API
PING_STATISTICS API
PING command

Top of list
Index page

Interrupt OXAC service 0x76: PING_CLOSE, finish ICMP echo requests
This function stops cyclic ICMP echo request (ping)
Parameters

AH
0x76 (= PING_CLOSE)

BX
Socket descriptor from call PING_OPEN

Return Value

DX:-1, AX -1, Ping close failed, should not happen, only if socket descriptor is invalid
else
DX: 0, AX:0: success

Related Topics

PING_OPEN API

Top of list
Index page

Interrupt OXAC service 0x77: PING_STATISTICS, retrieve ping information
The user can retrieve ping information by calling PING_STATISTICS
Parameters

AH
0x77 (= PING_STATISTICS)

ES:DI
Pointer to user's Pi ng structure from PING_OPEN call

Return Value

DX:-1, AX contains error code, Ping open failed
else DX:socket descriptor AX:0

Comments

Structure at [ES:DI] is filled with the ping statistics.
Related Topics

Pi ng structure type definition

PING_OPEN API
PING_CLOSE API

Top of list

Index page

Interrupt OXAC service 0x78: GETMEMORY_INFO, get information about TCP/IP stack
memory usage

This function returns the maximum available and the current used memory of the TCP/IP stack
Parameters

AH
0x78 (= GETMEMORY_INFO)

ES:DI
Address of user variable (unsigned long) to storage the max available memory

DS:SI
Address of user variable (unsigned long) to storage the current used memory

Return Value
DX: 0, AX 0 (The described memory sizes are stored at [ES:DI] and [DS:SI])
Comments

The max. available memory for the TCP/IP stack could be configured at chi p. i ni (see TCPIPMEM).
The memory required by the TCPIP Stack depends on the number of open sockets, the size and number
of transportded datapackets

For memory blocks equal or smaller than 4096 bytes the TCP/IP stack inside the SC12 BIOS allocates
memory

from this block. The TCP/IP stack doesn't release this memory back to the system. It will be internally
recycled for further usage.

The default size of this memory block is 90 kBytes in the SC12 Large version and 98 kBytes in the BIOS
version including PPP.

Memory blocks bigger than 4096 bytes are allocated from the SC12 BIOS memory. The TCP/IP stack
release these blocks back to the SC12 memory management.

If your application requires a lot of memory you should avoid sending and receiving packets larger than
2048 bytes.

Larger packets should be split into some smaller ones prior to sending.
With BIOSINT OxAO0 0x20 it is possible to install a user errorhandler fucntion, which will be called, if the
memory limit is reached.

Related Topics

OxAO00x20 Install a user fatal error handler
IPC@Chip TCPIP memory chi p. i ni Configuration

Top of list
Index page

Interrupt OXAC service 0x79: SET_SERVER_IDLE_TIMEOUT
Set/Get the Idle timeout of the FTP- and Telnet Server.
Parameters

AH
0x79 (= SET_SERVER_IDLE_TIMEOUT)

AL

0: Set Timeout, 1: Get Timeout
BX

0: Ftp Server, 1: Telnet Server
DX

Timeout Value

Return Value

AL=0(Set idle timeout): DX=0, AX=0 success
AX=DX=-1 Server not provided

AL=1(Get idle timeout): AX=0, DX contains Timeout Value
AX=DX=-1 Server not provided

Comments

The call of this function inserts the timeout in the Chip.Ini, if AL is equal to 0. The timeout will be valid
without reboot. If AL is 1, the call returns the idle timeout of the server commited in BX. See also
CHIP.INI documentation.

Related Topics

Ftp Timeout in chi p. i ni Configuration
Telnet Timeout in chi p. i ni Configuration

Top of list
Index page

Interrupt OXAC service 0x80: ADD _DEFAULT_GATEWAY, add the default gateway

This function is used to add the default gateway for all interfaces

Parameters

AH

0x80 (= ADD_DEFAULT_GATEWAY)

BX
the device entry of the gateway, O: Ethernet, 1. PPP server, 2: PPP client

ES:DI
Address of user variable (unsigned long) of the gateway IP

Return Value

DX: 0, AX O success
DX:-1, AX contains error code

Comments

If this function is used, the gateway entry in the chi p. i ni becomes invalidated, but unchanged.
Related Topics

DEL DEFAULT GATEWAY API function

TCP/IP API Error Codes

IP Gateway chi p. i ni Configuration
PPP server Gateway chi p. i ni Configuration

Top of list
Index page

Interrupt OXAC service 0x81: DEL_DEFAULT_GATEWAY, delete the default gateway

This function is used to add the default gateway for all interfaces

Parameters

AH
0x81 (= DEL_DEFAULT_GATEWAY)

ES:DI
Address of user variable (unsigned long) of the gateway IP

Return Value

DX: 0, AX 0 success
DX:-1, AX contains error code

Comments

If this function is used, the gateway entry in the chi p. i ni becomes invalidated, but unchanged.
Related Topics

ADD DEFAULT GATEWAY API function
TCP/IP API Error Codes

IP Gateway chi p. i ni Configuration

PPP server Gateway chi p. i ni Configuration

Top of list
Index page

Interrupt OXAC service 0x82: GET_DEFAULT_GATEWAY, get the current default gateway

This function is used to get the default gateway for all interfaces.

Parameters

AH
0x82 (= GET_DEFAULT_GATEWAY)

ES:DI
Address of user variable (unsigned long) for storage the gateway IP

Return Value

DX: 0, AX 0 success, Location at [ES:DI] contains the gateway IP in network byte order.
DX:-1, AX contains error code

Related Topics

TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x83: ADD_STATIC_ROUTE, add a route for a interface

This function is used to add a route for a interface. It allows packets for
a different network to be routed by the interface.

Parameters

AH

0x83 (= ADD_STATIC_ROUTE)

BX
the device entry of the gateway, O: Ethernet, 1. PPP server, 2: PPP client

ES:DI
Pointer to user Rout e_Ent ry structure

Return Value

DX: 0, AX O success
DX:-1, AX contains error code

Comments

The Rout e_Ent ry structure is defined in tcpipapi.h:

Related Topics

Rout e_Ent ry structure type definition
TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x84: DEL_STATIC_ROUTE, delete a route for an interface
This function is used to delete a route for an interface.
Parameters

AH
0x84 (= DEL_STATIC_ROUTE)

ES:DI
Pointer to user Rout e_Ent ry structure

Return Value

DX: 0, AX 0 success
DX:-1, AX contains error code

Comments

Only structure members dest | PAddr ess and dest Net mask must be valid at the functions call.

Related Topics

Rout e _Ent ry structure type definition
TCP/IP API Error Codes

Top of list
Index page

Interrupt OXAC service 0x90: ADD_IGMP_MEMBERSHIP, Install an IP multicast address
entry

Install an IP multicast address entry, becoming a member of an IP multicast group.

IP Multicasting is the internet abstrcation of hardware multicasting. It allow transmission of IP datagrams
to a group of hosts that build a single multicast group. Membership in an multicast group is dynamic.
Hosts may join or leave group at any time. Each multicast group has unique IP multicast address (Class
D address). The first four bits of an IP multicast address must match to 1110. IP multicast addresses
range from 224.0.0.0 through 239.255.255.255.

For the usage of IP multicasting at an ethernet interface IP multicast addresses must be mapped to
ethernet hardware addresses. The ethernet device of the IPC@Chip will be switched into the ethernet
multicast mode. At this mode it receives any incoming IP packet with the mapped ethernet multicast
address and forwards it to the TCPIP layer. Each IP multicast packet will be sended with the mapped
ethernet multicast address.

Because of the feature, that a multicast IP packet will be received by by any member of a multicast host,
sending and receiving of IP Multicasts packets is only usable at UDP sockets (datagram sockets).

After installing a IP multicast address with that API call, the application programmer is able use this
address as destination address for sending datagrams. A UDP socket is able to receive datagrams with
the specified multicast address.

Parameters

AH
0x90 (= ADD_IGMP_MEMBERSHIP)

ES:DI
Pointer to multicast IP address from type unsigned long

DS:SI
Pointer to a 6 byte array that contains the corresponded ethernet address

Return Value

DX: 0, AX O success
DX:-1, AX contains errorcode, invalid class D address, or no free entry at IGMP table available

Comments

The max. number of supported IP multicast addresses at the IPC@Chip is limited by 15. Before installing
an IP multicast address, you can find out the corresponding ethernet multicast address with Map |IP

multicast address to ethernet address

Using multicast addresses is only possible with the ethernet interface. Because of the feature, that a
multicast IP packet will be received by any member of a multicast host group, sending and receiving of IP
Multicasts packets is only usable at UDP sockets (datagram sockets).

Related Topics

API function DROP_IGMP_MEMBERSHIP - Delete an IP multicast address entry
API function MCASTIP_TO MACADDR - Map IP multicast address to ethernet address

Developer Notes

This implementation is still under development. It does not support multicast routing. Sending and receiving
multicast datagrams works only at local network. Please contact us at our internet newsgroup or direct by email,
if you have questions,problems or suggestions.

Top of list
Index page

Interrupt OXAC service 0x91: DROP_IGMP_MEMBERSHIP, Delete an IP multicast address
entry

Delete an IP multicast address entry, leaving a multicast host group.
Parameters

AH
0x91 (= ADD_IGMP_MEMBERSHIP)

ES:DI
Pointer to multicast IP address from type unsigned long.

Return Value

DX: 0, AX O success
DX:-1, AX -1, ip address entry not found

Comments

Related Topics

API function ADD_IGMP_MEMBERSHIP - Install an IP multicast address entry
API function MCASTIP_TO MACADDR - Map IP multicast address to ethernet address

Top of list
Index page

Interrupt OXAC service 0x92: MCASTIP_TO_MACADDR, Map IP multicast address to
ethernet address

Map an IP multicast address to the corresponding ethernet address
Parameters

AH
0x92 (= MCASTIP_TO_MACADDR)

ES:DI
Pointer to multicast IP address from type unsigned long

DS:SI
Pointer to a 6 byte array to storage the generated ethernet multicast address

Return Value

DX: 0, AX 0 success, storage at DS:Sl contains the generated ethernet address
DX:-1, AX -1, invalid ip address

Comments

This API function computes the mac address in the following way: To map an IP multicast address to a
corresponding ethernet multicast address place the low-order 23 bits of the IP mulitcast address into the
low order 23 bits of the special Ethernet multicast address 01 00 5E 00 00 00 e.g. IP multicast address
224.0.0.1 becomes ethernet address 01 00 5E 00 00 01

Related Topics

API function ADD _IGMP_MEMBERSHIP - Install an IP multicast address entry
API function DROP_IGMP_MEMBERSHIP - Delete an IP multicast address entry

Top of list
Index page

End of document

BELCK

Beck IPC GabH

TCP/IP APl Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

TCP/IP APl News

The following extension to the TCP/IP API are available in the indicated BIOS revisions.

New in version 1.02B: ADD IGMP_MEMBERSHIP, Install an IP multicast address entry
New in version 1.02B: DROP IGMP_MEMBERSHIP, Delete an IP multicast address entry
New in version 1.02B: MCASTIP_TO MACADDR,Map IP multicast address to ethernet address
New in version 1.02B: SET_SERVER IDLE TIMEOUT

New in version 1.02B: API_GET _SOCKET ERROR, returns the last socket error

New in version 1.02B: APl GET TELNET STATE,Get the state of the telnet server

New in version 1.02B: APl REGISTERCALLBACK PASCAL

New in version 1.01B: Modified: GET INSTALLED SERVERS and interfaces

New in version 1.01B: GetSocketOption: More socket options

New in version 1.01B: APl _REGISTERCALLBACK

New in version 1.01B: APl FTP_GET LOGIN

New in version 1.01B: APl TELNET GET LOGIN

New in version 1.01B: APl SNMP_GET

New in version 1.00: API_ SETBLOCKINGMODE

End of document

http://www.bcl.de/

BECK

Beck IPC GmbH

TCPI/IP Error Codes - BIOS V1.02 Beta

IPC@Chip Documentation Index

TCP/IP API Error Codes

Network API error codes returned by API calls (stated here in decimal):

. PPPclient
. PPPstatus

201 Operation not permitted

202 No such file or directory

203 No such process

204 Interrupted system call

205 Input/output error

206 Device not configured

209 Bad file descriptor

210 No child processes

211 Cannot allocate memory

213 Permission denied

214 Bad address

217 File exists

219 Operation not supported by device
220 Not a directory

221 Is a directory

222 Invalid argument

235 Operation would block

236 Operation now in progress

237 Operation already in progress
238 Socket operation on non-socket
239 Destination address required

240 Message too long

241 Protocol wrong type for socket
242 Protocol not available

243 Protocol not supported

244 Socket type not supported

245 Operation not supported

246 Protocol family not supported

247 Address family not supported by protocol family
248 Address already in use

249 Can't assign requested address
250 Network is down

251 Network is unreachable

252 Network dropped connection on reset
253 Software caused connection abort
254 Connection reset by peer

255 No buffer space available

256 Socket is already connected

257 Socket is not connected

258 Can't send after socket shutdown
259 Too many references: can't splice
260 Operation timed out

http://www.bcl.de/

261 Connection refused
264 Host is down
265 No route to host

-1 socket call failed
0 no error

PPP client error codes

/] Possible client error

#defi ne PPP_I NV_COVPORT -1

#defi ne PPP_I NUSE -2
#def i ne PPP_I NV_USER -3
#def i ne PPP_OPEN _FAI L -4
#define PPP_I NV_DEV -5
#defi ne PPP_I PCFG FAI L -6
#def i ne PPP_CONNECT_FAIL -7
#def i ne PPP_CLOSETI MEQUT -8
Top of list

Index page

codes

/1

/1
/1
/1
/1
/1
/1
/1

invalid port nunber or PPP server is active at this port
/1 this errorCode al so occurs, if
/1 the pppclient is interrupted while dialing
/'l (e.g. user break by setting the flag nodem break
/1 at the struct pppclient_init
/1 or another nodem error

client is already active

i nvalid user or password

open of the interface failed

interface was not found

got an invalid IP fromthe peer

connection to the peer failed

G osing connection tined out

PPP client status codes

/1 Possible states of a PPP client connection

/1 dient is not running
/1 Link is down

/1 open link in progress
/1l Link is established

#def i ne PPP_NOTAVAI L -1
#def i ne PPP_LNKDOMN 0
#define PPP_LNKW LLOPEN 1
#def i ne PPP_LNKUP 2
Top of list
Index page

TCP/IP API Listing

End of document

BELCK

Beck IPC GabH

TCP/IP Application Developers Note - BIOS V1.02 Beta

IPC@Chip Documentation Index TCP/IP API News

TCP/IP Applications

Developer Notes

The given examples should be used and modified by the application programmer.

The application programmer should know how the socket-interface works!!

Some of the programs are using i nt 86x calls with the CPU registers loaded as described. We also provide a
C-Library (tcpip.c), which places C wrapper functions around the software interrupt calls.

All program examples built with C-API-functions use the files tcpip.c, tcpip.h and tcpipapi.h. The SC12 Beta
version contains revised TCP/IP API calls, so you should always use the current TCP/IP API C and H files
(tcpipapi.h, tcpip.c, and tcpip.h).

These files contain all available API calls.

Available examples:

UDPEchoClient, udpclie.c, built with int86x calls

UDPEchoServer, udpserv.c, built with int86x calls

TCPEchoClient, tcpclie.c, built with int86x calls

TCPEchoServer, tcpserv.c, built with int86x calls

TCPEchoClient, tcpclie.c, built with C-API-functions, using tcpip.c
TCPEchoServer, tcpserv.c, built with C-API-functions, using tcpip.c
Reconfigure Ethernet interface, cfgip.c

TCP/IP recv packet counting, pkt_cnt.c

PPP server API test, ppps.c

PPP client example, pppclie.c

CoOxNoOrWDNE

=

TCP/IP API

End of document

http://www.bcl.de/

BECK

Beck IPC GmbH

Data Structures used in TCP/IP API - BIOS V1.02 Beta

IPC@Chip Documentation Index

Data Structures

Here are the BSD structures and own datatypes used by the TCP/IP API .
All constants and data structures are defined in the header file tcpipapi.h

Notes:

1. Byte alignment is required within all data structures used within the API.
2. The phrase "network byte order" means big endian (like Motorola machines, unlike Intel).

Content :

. typedefGetSocketOption
. structin_addr
. typedefPacket Count

. typedefPing
. typedefPPPClient Init

. typedefPPPDial

. typedefPPP_ModemHangup
. typedefPPP_IPCfg Data

. structrecv_params

. typedefRoute Entry

. typedefSetSocketOption

. typedefPasCallBack

. structsend params

. structsockaddr

. structsockaddr in

. structtaglfMib

. structtaglpMib
. structtaglcmpMib

. structtagTcpMib
. StructtagUdpMib
. Structtag atEntry

GetSocketOption

typedef struct tag_get sockopt

{
i nt prot ocol _|evel; /'l protocol level, ip level, tcp |level or socket |evel
i nt opt i onNane; /1 option's nane
char *optionVal ue; /1 pointer to the option value buffer (type varies)

i nt *optionLengt h; /1 length of option value buffer

http://www.bcl.de/

} Get Socket Opt i on;
Comments

The type of data found at the location referenced by the opt i onVal ue member varies
depending on the particular socket option that is being dealt with.

When manipulating socket options, the pr ot ocol _| evel at which the option resides and the
name of the option (opt i onName member) must be specified. The size of the buffer required
pointed to by the opt i onVal ue member depends on the option. These sizes are stated in the
list below. The parameters opti onVal ue and opti onLengt h are used to access option values.

The following list shows the three different protocol levels and their valid socket options,
including a short description and the length of the option value. Protocol level and opt i onNane
constants referred to here are defined in tcpipapi.h

1. protocol _| evel =I P_PROTO P_LEVEL (IP level options)
« optionNane=I PO TOS: Size: 8 bit - Set IP type of service, default 0
« optionNane=I PO TTL : Size: 8 bit - Set IP time-to-live seconds, default 64
2. protocol _| evel =I P_PROTOTCP_LEVEL (TCP level options)

« optionNane=TCP_NODELAY : Size: 16 bit - 1:Disable nagle algorithm, default is 0: nagle algorithm is
enabled

« opti onName=TCP_NOPUSH: Size: 16 bit -1: Force TCP to delay sending any TCP data until
a full sized segment is buffered in the TCP buffers, useful, if continuous large amount of data is sent like FTP,
defaultis O

« optionNane=TCP_SLOW START : Size: 16 bit -1: Enable the TCP slow start algorithm(default), O:disable

« optionNane=TCP_KEEPALI VE: Size: 16 bit - Set idle time seconds before sending keep alive probes,
default 7200 seconds.
Notes:

The socket level option SO_KEEPALI VE(see below) must be enabled, default 7200 seconds.
The minimum value was changed in BIOS070 to 10 seconds (was 7200 seconds in BIOS069).

« optionNane=TCP_DELAY_ ACK: Size: 16 bit - Set the TCP delay ACK time in milliseconds, default:200
milliseconds

« optionNane=TCP_FI NWI2TI ME: Size: 16 bit - Set the max. amount of time TCP will wait for the remote
side to close, default 600 seconds

« optionNane=TCP_2MSLTI ME: Size: 16 bit - Set the max. amount of time TCP will wait in the TIME WAIT
state, once it has initiated a close,default 2 seconds

« optionNane=TCP_KEEPALI VE | NTV: Size: 16 bit - Set keep alive interval probes, default 75 seconds

Note:
This value can only be modified after a listen call, before a connection is established.

« optionNane=TCP_KEEPALI VE_CNT : Size: 16 bit - Set maximum number of keep alive probes before TCP

gives up and closes the connection, default: 12
3. protocol _| evel =SOCKET_LEVEL

« optionNane=SO REUSEADDR: Size: 16 bit - Enable/disable local address reuse, coding: 1=enable,
O=disable default: enable

« optionNane=SO KEEPALI VE: Size: 16 bit - Keep connections alive, coding: 1=enable, O=disable default:
disable

« optionNane=SO _SNDBUF : Size: 32 bits - Socket send buffer size, default TCP 4096, UDP 2048 bytes.
(We recommend a maximum size of 8192 Bytes.)

« opti onNane=SO RCVBUF : Size: 32 bits - Socket input buffer size, default TCP 4096, UDP 2048 bytes.
(We recommend at maximum size of 8192 Bytes.)

Related Topics

API function API_GETSOCKOPT - Get socket options
SetSocketOption typedef

Top of list
Index page

in_addr

struct in_addr

{
b

u_long s_addr; // 32 bit netid/hostid address in network byte order

Top of list
Index page

Packet_Count

typedef struct tag_cnt_packet

{
unsigned int * cnt_all _packets; /1 count all incom ng Ethernet packets
unsigned int * cnt_ip_packets; /1 count incoming |IP packets
unsigned int * cnt_arp_packets; /1 count incom ng ARP packets
unsigned int * cnt_tcp_packets; /1 count incomng TCP packets
unsigned int * cnt_udp_packets; /1 count incomng UDP packets
unsigned int * cnt_icnp_packets; /1 count incomng | CVP packets
unsigned int * cnt_all_sended_packets; /1 count all sent Ethernet packets
unsigned int * cnt_ip_sended_packets; /1 count all sent |IP packets
unsigned int * cnt_arp_sended_packets; /1 count all sent ARP packets
unsigned int * cnt_tcp_sended_packets; /1 count all sent TCP packets
unsigned int * cnt_udp_sended_packets; /1 count all sent UDP packets
unsigned int * cnt_icnp_sended_packets; /1 count all sent |CWP packets
unsigned int * cnt_ip_chksumerrs; /1 count all checksumerrors on incomng |IP packets
unsigned int * cnt_udp_chksumerrs; // count all checksumerrors on incom ng UDP packets
unsigned int * cnt_tcp_chksumerrs; // count all checksumerrors on incom ng TCP packets
unsigned int * cnt_eth_errs; /1 count all errors on incom ng Ethernet packets

} Packet _Count;
Comments

Note: The counters count _al | _packet s and count _al | _sended_packet s count only Ethernet packets.
Other counters also count the packets from and to other devices e.g. local loopback packets and PPP packets.

Related Topics

API function TCPIP_STATISTICS - Open PPP client session.

Top of list
Index page

Ping

typedef struct tag_ping_conmand

{
i nt sd; /1 socket descriptor, set by PI NG OPEN
/1 User nust set follow ng four values prior to PI NG OPEN APl cal
char * renoteHostNamePtr; // Renote IP

i nt pi ngl nterval ; /1 seconds

i nt pi ngDat aLengt h; /1 maxi mum 1024 bytes

unsi gned | ong count; /1 number of pings to send

unsi gned char pingstate; /1 pin socket state, 1: open 0: closed

[lstatistics, filled by ping conmmand
unsigned long transnitted; // sent ping requests

unsi gned | ong received, /1 received replies

unsi gned int |astsenderr; /1 last send error
unsi gned int |astrcverr; /1 last receive error
unsi gned | ong maxRit; /1 Maxi mumround trip time, rounded off to 100 ns step, in
m | 1iseconds
unsi gned long mnRtt; /1 Mnimumround trip tinme in mlliseconds, (100 ns steps)
unsigned long lastRtt; /1 round trip time (100 nms steps) of the last ping request/reply
} Ping;
Comments

Caller to PING_OPEN API must initialize structure members:
r enot eHost NanePt r ... who to "ping"
pi ngl nt er val ... block repetition rate
pi ngDat aLengt h... size of ping data blocks
dunmy... simply zero this value

The remainder of the data structure is managed within the API functions.
Related Topics

API function PING OPEN - Start ICMP echo requests

Top of list

Index page

PPPClient_Init

typedef struct tag ppp_client

{
int port; /1 serial port (0:EXT 1.COM
int auth; /1 0: no authentication

/1 1:PAP dient nust send usernanme and password for PAP
aut hentication to the peer
/1l 2:CHAP dient nust send username and password for CHAP
aut hentication to the peer
/1 3:PAP Cient expects PAP usernane and password fromthe peer
/1l 4:CHAP dient expects CHAP usernane and password fromthe peer

int nodem /1 modem usage (0: nul | rodem 1: noden)

int flow /'l serial flow control (0: none, 1:XON XOFF, 2:RTS/ CTS)

| ong baud; /1 Serial port BAUD rate

unsi gned | ong idletinmeout; /1 closing PPP after idle time seconds (0: no closing after idle
time)

char usernane[50]; /1l Used if .auth !'=20

char password[50]; /1l Used if .auth !'=20

void * dptr; /1 dummy ptr

char PPPC i ei pAddrStr[16]; [11f IPis set to "0.0.0.0" client expect IP formthe peer, IPis
filled in after sucessful connection

[11f IPis set to a string !'="0.0.0.0" client wants to use this

| P during the ppp session

char PPPCl i eRem pAddrStr[16]; //1f RenotelP is set to "0.0.0.0" client allow the peer to use its
own | P during the PPP session,
the RenotelP is filled in after sucessful connection

/11f RemptelP is set to a string !'="0.0.0.0" client wants to
configure the renpte peer with this IP

char PPPC i enet MaskStr[16]; /'l subnet mask

char PPPCliei pGatewayStr[16]; // gateway

PPPDi al pppdi al [PPPCLI E_ MAX DI AL]; // nodem dial entries
PPP_MbdenHangup nodem _hangup; /'l nmodem hang-up conmands
i nt br eak_nodem /1 Flag for breaking SCl2 - npdem

/1 control comunication (dialing, waiting for connect)

/1 Setting break_nodemto 1, breaks current nmodem control conmunication

/1 between SCl12 and the nodem at a PPP client open or close call,

/1 The PPP client reads this flag and breaks the dialing, if flag is set.

/1 This flag could be set fromanother task. It will not break an established
/1 PPP link! Don't forget to clear this flag to zero after breaking.

} PPPClient_Init;

Comments

The PPPC i ent _| ni t structure is used to open a PPP client session.

The flow control mode XON/XOFF is not tested. It is not advisable to use it.
Since BIOS 1.02B XON/XOFF mode is also available if the DMA mode for the selected serial port is enabled but because of

the internal functionality of DMA it is not possible to detect an XON or XOFF of the peer immediateley. It is possible that an
overrun situation at the connected peer (e.g. GSM modem) could occur. We enable this mode now because GSM modems
(any??) supports only XON/XOFF flow ctrl.

The PPPCl i ent _I ni t structure contains an array of the PPPdi al structures used for initializing and dialing a modem.
These modem commands will be executed at the start of establishing a connection to a PPP server.

The PPPCl i ent _| ni t structure also contains a PPP_NMbdenHangup structures for closing the modem connection

For how to initialize and use these structures see the PPPCLIE.C example.

Related Topics

API function PPPCLIENT _OPEN - Open PPP client session.
PPPdial dial-up command data

Top of list
Index page

PPPDial

typedef struct tag_pppdial _init

{
char * nodenctnd; /1 nodem comand string
char * nodenmans; /1 nmodem answer string
i nt ti meout ; /1 seconds, 0 = no time out
i nt retries; /1 Maxi mum nunber of dial attenpts.
char expect_send; /1l = 0: PPP client sends nodem AT comand
11 and expects nodem answer (e.g. OK).
/1 = 1. PPP client expects npbdem answer
/1 (e.g. CONNECT) and sends nodem conmand.
} PPPDi al ;
Comments

The PPPDi al structure is used during PPP client dial-up.

Related Topics

API function PPPCLIENT_OPEN - Open PPP client session
PPPClient_Init PPP client open data structure

Top of list
Index page

PPP_ModemHangup

typedef struct tag_pppclie_hangup
{

char *nodencndnode; [l string for switching nmodeminto command node e.g. +++
i nt del ay; /1 delay time after switching in seconds
PPPDi al pppdi al [PPPCLI E_MAX DI AL]; // nodem commands and answer for hang-up procedure

} PPP_NMbdenHangup;
Comments

The PPP_ModenmHangup structure is used when closing a PPP modem connection.
Related Topics

API function PPPCLIENT OPEN - Open PPP client session
PPPClient_Init PPP client open data structure

Top of list
Index page

PPP_IPCfg_Data

typedef struct tag_pppi pcfg _data

{
char | P[16] ; /1 PPP server |IP
char Rem P[16] ; /1 Rermote IP (given to the client, if connected)
char Net mask[16] ; /1 Subnet mask
char Gat eway|[16] ; /1 Gat eway
unsi gned int conport; /1 COM port: EXT=0, COW1
unsi gned int papauth; /1 0: no authentication 1: PAP 2: CHAP
unsigned int nodem /1 Anal og Mbden¥l, Null Mdem cabl e=0
unsigned int flow, /1 Flow control
| ong baud; /1 BAUD rate

} PPP_I PCf g_Dat a;
Comments

The PPP_I PCf g_Dat a structure is used to read out the configuration of the PPP server.
Related Topics

API function PPPSERVER GET CFG - Get PPP server configuration

Top of list
Index page

recv_params

struct recv_parans

{
char *pbufferPtr; /1 Store incomng data here
i nt buf f er Lengt h; /1 Maxi mum bytes to store
i nt flags; /1 Blocking, timeout or no wait
struct sockaddr *fronPtr; /1 only needed for UDP
i nt *from engthPtr; /1 only needed for UDP
unsi gned | ong ti meout; /1 tinmeout mlliseconds
b
Comments
The sockaddr structure referenced by the f r onPt r member is cast to a sockaddr _i n structure prior to usage.
The integer referenced by the f r ol engt hPt r pointer should be set to si zeof (struct sockaddr _in).
Flags:
MSG_BLOCKING: Sleeping until data comes in
MSG_TIMEOUT : The caller wakes up from recv after timeout or if data comes in, struct member timeout must be filled
MSG_DONTWAIT: Return immediately, if nothing received
Top of list
Index page

Route_Entry

typedef struct tag route_entry{

unsi gned | ong dest| PAddress; // The |IP address to add the route for
unsi gned | ong dest Net mask; /1 The netmask for the route
unsi gned | ong gat eway; /1 1P address of the gateway of the route
i nt hops; /1 Nunber or routers between this host and route
} Route_Entry;
Comments
Top of list
Index page
SetSocketOption
typedef struct tag_set sockopt
{
i nt protocol _|evel; /1 protocol level, ip level,tcp | evel or socket |eve
i nt opt i onNarme; /1 option's nane
const char *optionValue; // pointer to the option value (type varies)
i nt optionLength; // length of option value data

} Set Socket Opt i on;

/1 Exanpl e usage of API_SETSOCKOPT and Set Socket Option type to set

11

union REGS inregs,
struct SREGS segregs;
unsi gned char tine_to live =
i nt socketdescriptor;

Set Socket Opti on sockopt

outregs;

IP Tine-to-Live to 69 seconds:

69;

= {1 P_PROTA P_LEVEL, 11
| PO _TTL, /11
(const char*)&ine_to live, [/
si zeof (unsi gned char)}; /1

. protocol _| evel
. opti onNane
.optionVal ue

. optionLength

i nregs. h. ah APl _SETSOCKOPT;

i nregs. x. bx socket descri ptor;

segregs. h.es = FP_SE({ &sockopt); /1 Fill in ES:D with a pointer to sockopt

i nregs. x.di = FP_OFF(&sockopt);

i nt 86x(TCPI PVECT, &i nregs, &outregs, &segregs); [// Call APl interrupt OxAC function
APl _SETSOCKOPT

Comments

The type of data found at the location referenced by the opt i onVal ue member varies
depending on the particular socket option that is being dealt with.

Related Topics

For list of options and sizes see GetSocketOption
API function API_SETSOCKOPT - Set socket options

Top of list
Index page

PasCallBack

typedef struct tag_PasCal | Back

{
i nt sd; /'l socket descri ptor
i nt event; [/ occured event

} PasCal | Back;

Comments

The Pointer to this struct will be committed to a Pascal callback function in the registers ES:DI. You can read out the
information about the socket and the event which has invoked the callback function.

Related Topics

To register a pascal callback function see API_REGISTER_CALLBACK_ PASCAL

Top of list
Index page

send_params

struct send_parans

{
char *pufferbPtr; /1 Pointer to send data
i nt buf f er Lengt h; /1 Number of bytes to send
i nt fl ags; /1 Bl ocking or no wait
struct sockaddr *toPtr; /1 only needed for UDP
i nt *tol engt hPtr; /1 only needed for UDP

s

Comments

The sockaddr_structure referenced by the t oPt r member is cast to a sockaddr _i n structure prior to usage.
The integer referenced by the t ol engt hPt r pointer should be set to si zeof (struct sockaddr _in).

Flags:
MSG_BLOCKING: Sleeping until data comes in
MSG_DONTWAIT: Return immediately, if nothing received

Top of list
Index page

sockaddr

struct sockaddr

{

u_char sa_len; /1 Total Length
u char sa famly; /1 Address Famly AF_Xxxx
char sa_data[14]; // up to 14 bytes of protocol specific address

b
Comments

This generic "one size fits all" BSD structure is treated as a sockaddr _i n structure within the TCP/IP API functions.

Top of list
Index page

sockaddr_in

struct sockaddr_in

{
short sin_famly; [/ AF_INET
u_short sin_port; /1 16bit Port Number in network byte order
struct in_addr sin_addr; /1 32bit netid/hostid in network byte order
char sin_zero[8]; // unused
H
Comments
The si n_f am | y member should be set to AF_I NET (=2).
The si n_addr member'si n_addr structure is simply a long IP address in big endian byte order.
Top of list
Index page
taglfMib
typedef struct taglfMb /linterface, only ethernet is supported
{
| ong i flndex; /1 index of this interface 1 for ethernet, currently only
et her net
char i fDescr[32]; /1 description of interface
| ong i f Type; /1 network device type
| ong i fMu; /'l maxi mum transfer unit
unsi gned | ong i f Speed; /1 bandwi dth in bits/sec
unsi gned char ifPhysAddress[11]; // interface's address
unsi gned char PhysAddrLen; /1 length of physAddr: 6
| ong i fAdm nStatus; // desired state of interface, not supported

| ong i f Oper St at us; /1 current operational status, not supported

//counters

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
}1fMb;

Comments

| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong

devLast Change; /1

devl nCct et s; /'l nunber of
devl nUcast Pkt s; /'l nunber of
devinMul ticastPkts; // nunber of

devl nBroadcast Pkts; //broadcasts

devl nDi scar ds; /'l nunber of
devlnErrors; /'l nunber of
devl nUnknownProt os; // nunber of
devQut Cct et s; /'l nunber of
devQut Ucast Pkt s; /'l nunber of

devQut Mul ti cast Pkts;// nunber of
devQut Broadcast Pkt s;// broadcasts
devQut Di scar ds; /'l nunber of
devQut Errors; /'l nunber of
devQut QLen; /'l nunber of

val ue of sysUpTi ne when current state entered

octets received on interface
uni cast packets delivered
nul ti cast packets delivered,
del i vered

br oadcast s

packets containing errors
packets w th unknown protoco
octets transnitted

uni cast packets sent
nmul ti cast packets sent

sent

packets discarded with no error
pkts discarded with an error
packets in output queue

not supported

Note: These structures are only available at BIOS versions, which contain the

SNMP option. A SNMP agent is not part of the BIOS. But if an user is able to implement

an agent based on the TCPIP API, he needs access to the internal TCPIP SNMP variables

The SNMP varialbes are not a part of our current official 6 BIOS versions. You must order direct a BIOS version, which
includes this feature.

Related Topics

API function API_SNMP_GET - Get internal TCPIP SNMP variables

Top of list

Index page

taglpMib

typedef struct taglpMb

{
| ong i pFor war di ng; /11
| ong i pDef aul t TTL; /1 default TTL for pkts originating here
unsi gned | ong i pl nRecei ves; /1 no. of |IP packets received frominterfaces
unsi gned | ong i pl nHdrErrors; /'l number of pkts discarded due to header errors
unsi gned | ong i pl nAddr Errors; /1 no. of pkts discarded due to bad address
unsi gned | ong i pForwDat agr ans; /1 nunber pf pkts forwarded through this entity
unsi gned | ong i pl nUnknownProtos; // no. of |ocal-addressed pkts w unknown proto
unsi gned | ong i pl nDi scards; /1l nunber of error-free packets discarded
unsi gned | ong i pl nDel i vers; /1l nunber of datagrans delivered to upper |evel
unsi gned | ong i pQut Request s; /1 nunber of |P datagrans originating locally
unsi gned | ong i pCQut Di scar ds; /'l nunmber of error-free output |P pkts discarded
unsi gned | ong i pQut NoRout es; /1 nunber of IP pkts discarded due to no route
| ong i pReasnli neout ; /1l seconds fragnment is held awaiting reassenbly
unsi gned | ong i pReasnReqds; /1 no. of fragnents needing reassenbly (here)
unsi gned | ong i pReasnCKs; /1l nunber of fragnments reassenbl ed
unsi gned | ong i pReasnfail s; /1 nunber of failures in IP reassenbly
unsi gned | ong i pFragCKs; /1 nunber of datagrans fragnmented here
unsi gned | ong i pFragFail s; /1 no. pkts unable to be fragnented here
unsi gned | ong i pFragCr eat es; /1l nunber of IP fragnents created here
unsi gned | ong i pRout i ngDi scar ds;

} 1 pMb;

Comments

Note: These structures are only available at BIOS versions, which contain the
SNMP option. A SNMP agent is not part of the BIOS. But if an user is able to implement
an agent based on the TCPIP API, he needs access to these internal TCPIP variables

Related Topics

API function API_SNMP_GET - Get internal TCPIP SNMP variables

Top of list

Index page

taglcmpMib

typedef struct taglcmpMb

{
unsi gned | ong i cnpl nMsgs; /1 Total of |ICMP nsgs received
unsi gned | ong i cnpl nErrors; /1 Total of ICWMP negs received with errors
unsi gned | ong i cnpl nDest Unr eachs;
unsi gned | ong i cnpl nTi neExcds;
unsi gned | ong i cnpl nPar nPr obs;
unsi gned | ong i cnpl nSrcQuenchs;
unsi gned | ong i cnpl nRedi rect s;
unsi gned | ong i cnpl nEchos;
unsi gned | ong i cnpl nEchoReps;
unsi gned | ong i cnpl nTi nest anps;
unsi gned | ong i cnpl nTi nest anpReps;
unsi gned | ong i cnpl nAddr Masks;
unsi gned | ong i cnpl nAddr MaskReps;
unsi gned | ong i cnpQut Msgs;
unsi gned | ong i cnpQut Errors;
unsi gned | ong i cnpQut Dest Unr eachs;
unsi gned | ong i cnpQut Ti meExcds;
unsi gned | ong i cnpQut Par mPr obs;
unsi gned | ong i cnmpQut SrcQuenchs;
unsi gned | ong i cnpQut Redi rects;
unsi gned | ong i cnmpQut Echos;
unsi gned | ong i cnmpQut EchoReps;
unsi gned | ong i cnpQut Ti mest anps;
unsi gned | ong i cnpQut Ti mest anpReps;
unsi gned | ong i cnmpQut Addr Masks;
unsi gned | ong i cnpQut Addr MaskReps;

} lcnmpM b;

Comments

Note: These structures are only available at BIOS versions, which contain the
SNMP option. A SNMP agent is not part of the BIOS. But if an user is able to implement
an agent based on the TCPIP API, he needs access to these internal TCPIP variables

Related Topics

API function APl SNMP_GET - Get internal TCPIP SNMP variables

Top of list
Index page

tagTcpMib

typedef struct tagTcpMb

{
| ong tcpRtoAlgorithm // retransmission tineout algorithm
| ong tcpRt oM n; /1 mninmmretransnission tinmeout (nBS)
| ong t cpRt ovax; /1 maxi mumretransmni ssion tineout (nd)
| ong t cpMaxConn; /1 maximumtcp connections possible
unsi gned | ong t cpActi veQpens; /1 nunmber of SYN SENT -> CLOSED transitions
unsi gned | ong tcpPassi veQpens; // nunber of SYN-RCVD -> LISTEN transitions
unsi gned | ong tcpAttenpt Fails; //(SYN SENT, SYN- RCVD) - >CLOSED or SYN- RCVD- >LI STEN
unsi gned | ong t cpEst abReset s; /'l (ESTABLI SHED, CLOSE-WAI T) -> CLOSED
unsi gned | ong t cpCurr Est ab; /'l number in ESTABLI SHED or CLOSE-WAIT state
unsi gned | ong t cpl nSegs; /1 nunber of segments received
unsi gned | ong t cpQut Segs; /1 nunmber of segnments sent
unsi gned | ong t cpRetransSegs; /1 nunmber of retransmtted segnents
unsi gned | ong tcplnErrs; /!l nunber of received errors
unsi gned | ong tcpQut Rst s; /1l nunber of transmitted resets
} TcpM b;
Top of list
Index page
tagUdpMib
typedef struct tagUdpM b
{
unsi gned | ong udpl nDat agrans; // UDP datagrans delivered to users
unsi gned | ong udpNoPort s; /1 UDP datagranms to port with no |istener
unsi gned | ong udpl nErrors; /1 UDP dat agrans unable to be delivered
unsi gned | ong udpQut Dat agrans; // UDP datagrans sent fromthis entity
} UdpM b;
Comments

Note: These structures are only available at BIOS versions, which contain the
SNMP option. A SNMP agent is not part of the BIOS. But if an user is able to implement
an agent based on the TCPIP API, he needs access to the internal TCPIP SNMP variables

Related Topics

API function APl SNMP_GET - Get internal TCPIP SNMP variables

Top of list
Index page

tag_atEntry

typedef struct tag atEntry {
| ong | f1 ndex; /1 interface on which this entry naps
unsi gned char PhysAddress[11]; // physical address of destination
unsi gned char PhysAddressLen; // length of atPhysAddress
unsi gned | ong Net Address; /1 1P address of physical address
tatEntry;

Comments

Note: These structures are only available at BIOS versions, which contain the
SNMP option. A SNMP agent is not part of the BIOS. But if an user is able to implement

an agent based on the TCPIP API, he needs access to the internal TCPIP SNMP variables

Related Topics

API function API_SNMP_GET - Get internal TCPIP SNMP variables

Top of list
Index page

End of document

BELCK

Beck IPC GabH

Programming client server applications - BIOS V1.02 Beta

IPC@Chip Documentation Index

Client-Server

Programming client/server applications

Here is a short common description for programming client/server applications with the TCPIP API.
The most used methods for programming TCP/IP applications are client or server applications.

The term server applies to any process or program that offers a service that can be reached over the network.
Servers accept request that arrive over the network, perform their service, and return the result to the requester.
An example for the simplest service is the standard echoserver application. The server echoes the received data
over the network back to the requester. A process becomes a client when its sends a request to a server and
waits for an answer. the client-server model is the standard model for interprocess communication. At TCP/IP
communications there exist two different methods for client-server connections:

1.UDP protocol:

This protocol realizes connectionless communication between a client and server, based on sending and
receiving of single datagrams.

TCPIP API calls for an UDP client:

. Open a socket

. Send an outgoing datagram usually a prerecorded endpoint address.

. Receive the next incoming datagram and record its source endpoint address.
. Close a socket

TCPIP API calls for an UDP server:

. Open a socket

. Bind a socket, assign an address to an unnamed socket

. Receive the next incoming datagram and record its source endpoint address.
. Send an outgoing datagram usually a prerecorded endpoint address.

2.TCP protocol:

The TCP protocol is a connection- and bytestream-oriented protocol

http://www.bcl.de/

TCPIP API calls for a TCP client:

. Open a socket

. Connect to aremote peer

. Send an outgoing stream of characters

. Receive an outgoing stream of characters
. Close a socket

TCPIP API calls for a TCP server:
. Open a socket

. Bind a socket, assign an address to an unnamed socket
. Place the socket in a passive mode

. Accept the next incoming connection

. Receive an outgoing stream of characters

. Send an outgoing stream of characters

. Close a socket

We provide several examples for programming client/server applications:
. UDPEchoClient, udpclie.c, built with int86x calls

. UDPEchoServer, udpserv.c, built with int86x calls

. TCPEchoClient, tcpclie.c, built with int86x calls

. TCPEchoServer, tcpserv.c, built with int86x calls

. TCPEchoClient, tcpclie.c, built with C-API-functions, using tcpip.c

. TCPEchoServer, tcpserv.c, built with C-API-functions, using tcpip.c

Note:
All program examples built with C-API-functions use the files tcpip.c, tcpip.h and tcpipapi.h.

End of document

BELCK

Beck IPC GabH

RTOS API - BIOS V1.02 Beta

IPC@Chip Documentation Index RTOS APl News

RTOS API

Here is the documentation for the RTOS API. This interface provides access to the RTOS of the IPC@Chip.
Please note, that we cannot explain detailled all principles of a multitasking system at this document.
A good book for understanding the architecture of Real-Time-Kernels is e.g.: MicroC/OS from Jean.J.Labrosse.

Topics

RTOS API Overview

RTOS API News

RTOS API Error Codes
RTOS API DeveloperNotes
RTOS APl ExamplesAvailable
RTOS API Data Structures
IPC@Chip System Tasks

API Functions

The RTOS API uses interrupt OXAD with a service number in the high order byte of the AX register (AH). The
implemented RTOS services are listed below.

. Interrupt OXAD function 0x00: RTX SLEEP_TIME, Go to sleep for a specified time
Interrupt OXAD_function 0x01: RTX TASK_ CREATE, Create and start a task

. Interrupt OXAD function 0x11: RTX TASK CREATE WITOUT RUN, Create a task

. Interrupt OXAD_function 0x02: RTX TASK KILL, Stop and Kill specified task

. Interrupt OxAD function 0x03: RTX TASK DELETE, Remove atask from the system

. Interrupt OXAD function 0x04: RTX GET _TASKID, Get ID of the currently executing task
Interrupt OXAD_function 0x05: RTX SLEEP_REQ. Sleep unconditionally for a wake request

. Interrupt OXAD function 0x06: RTX WAKEUP_TASK, To wake up a task

. Interrupt OXAD_function 0x07: RTX END EXEC, End execution of a task by itself

. Interrupt OxXAD function 0x08: RTX CHANGE PRIO, Change priority of a task

. Interrupt OXAD function 0x14: RTX CREATE_ SEM, Create a semaphore
Interrupt OXAD_function 0x15: RTX DELETE_SEM, Delete a semaphore
Interrupt_ OXAD_function 0x16: RTX FREE RES, Unconditionally free a resource semaphore

http://www.bcl.de/

. Interrupt OxAD

function

Ox17:

RTX

GET SEM, Get use of a counting semaphore (no wait)

. Interrupt OxAD

function

0x18:

RTX

RELEASE SEM, Release aresource semaphore

Interrupt OxAD

function

0x19:

RTX

RESERVE RES, Get use of aresource semaphore

Interrupt OxAD

function

Ox1A:

RTX

SIGNAL SEM, Signal a counting semaphore

. Interrupt OXAD

function

0x1B:

RTX

WAIT SEM, Wait on a counting semaphore

. Interrupt OxAD

function

0x28:

RTX

GET TIMEDATE, Get system time and date

. Interrupt OxAD

function

0x29:

RTX

SET TIMEDATE, Set system time and date

Interrupt OxAD

function

0Ox2A:

RTX

GET TICKS, Get tick count of system clock

. Interrupt OxXAD

function

0x09:

RTX

ACCESS FILESYSTEM, Enable file access for the calling

task
. Interrupt OxAD

function

0x0A:

RTX

GET TASK STATE, Get state of a task

Interrupt OxAD

function

0x0B:

RTX

GET TASK LIST, Get list of current tasks in the system

Interrupt OxAD

function

0x0cC:

RTX

START TASK MONITOR, Enable task monitoring

. Interrupt OXAD

function

0x0D:

RTX

STOP TASK MONITOR, Disable task monitoring

. Interrupt OxAD

function

OxO0E:

RTX

SUSPEND TASK, Suspend a task

. Interrupt OxAD

function

OxOF:

RTX

RESUME TASK, Resume a task

Interrupt OxAD

function

0x10:

RTX

RESTART TASK, Restart a task

. Interrupt OxAD

function

0x12:

RTX

GET TASK STATE EXT, Get state without task monitoring

mode
. Interrupt OxXAD

function

0x20:

RTX

DISABLE TASK SCHEDULING, Disable the task scheduler

Interrupt OxAD

function

0x21:

RTX

ENABLE TASK SCHEDULING, enable the task scheduler

Interrupt OxAD

function

0x30:

RTX

INSTALL TIMER, Install a timer procedure

. Interrupt OxAD

function

0x31:

RTX

REMOVE TIMER, Remove atimer procedure

. Interrupt OxXAD

function

0x32:

RTX

START TIMER, Start periodic execution of a timer

procedure
Interrupt OxAD

function

0x33:

RTX

STOP TIMER, Stop execution of a timer procedure

. Interrupt OxAD

function

0x40:

RTX

CREATE EVENTGROUP, Create an event group

. Interrupt OxAD

function

0x41:

RTX

DELETE _EVENTGROUP, Delete an event group

. Interrupt OxXAD

function

0x42:

RTX

SIGNAL EVENTS, Signal one or more events in a group

Interrupt OxAD

function

0x43:

RTX

WAIT EVENTS, Wait for events in a group

. Interrupt OXAD

function

0x44:

RTX

GET EVENTGROUP STATE, Read the current event states

inagroup
Interrupt OxAD

function

0x45:

RTX

GET EVENT FLAGS, Get the saved event flags

Interrupt OxAD

function

0x46:

RTX

FIND EVENTGROUP, Find an event group

. Interrupt OXAD

function

0x50:

RTX

CREATE MSG, Create a message exchange

. Interrupt OXAD

function

0x51:

RTX

DELETE MSG, Delete a message exchange

. Interrupt OxAD

function

0x52:

RTX

SEND MSG, Send message

Interrupt OxAD

function

0x53:

RTX

GET MSG, Get message

Interrupt OxAD

function

0x54:

RTX

WAIT MSG, Wait for a message

. Interrupt OXAD

function

0x55:

RTX

FIND MSG, Find a message exchange

At return from most of the API calls, the DX-Register is used for error checking as follows:

DX: 0 RTX_ENOERROR -> success

DX -1 RTX ERROR -> error,

axX

contains error code

DX: -2 RTX _NOT_SUPPORTED -> service is not supported by the API

All needed constants and data structures for the usage of the RTOS API are defined in header file rtxapi.h. For
a better understanding of the RTOS API, some example programs written in C are provided. The user should
read these example and modify them for your own applications.

Interrupt OXAD service 0x00: RTX_SLEEP_TIME, Go to sleep for a specified time
Parameters

AH
0 (=RTX_SLEEP_TIME)

BX
Sleep time in milliseconds

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Comments

Note:
The RTX_WAKEUP_TASKAPI (service 0x06) can wake up a sleeping task before its sleep timer

has expired.

Related Topics

RTOS API Error Codes
RTOS Task Control Services

Developer Notes

A sleep call with parameter 1 millisecond takes equal or less than one millisecond. If an user needs a minimal
sleeptime of 1 millisecond he must call RTX_SLEEP_TIME with value 2.

Top of list
Index page

Interrupt OXAD service 0x01: RTX_TASK_CREATE, Create and start a task

Parameters

AH
0x01 (= RTX_TASK_CREATE)

BX:SI
Pointer to 16 bit storage for the taskID, allocated by the caller

ES:DI
Pointer to a TaskDefBlock type data structure

Return Value

DX =0 success AX: 0, task is running, location [BX:Sl] contains the 16 bit taskID
DX!=0 failure AX: contains error code

Comments

The caller must fill in portions of the TaskDefBlock structure prior to making this call.

The new task is immediately placed in the system's task ready queue. Execution begins if the task is
higher priority than any other task currently ready (including task which called RTX_TASK_CREATE).
Difference to RTX _TASK CREATE WITHOUT_ RUN call: The new task runs after this call.

Related Topics

RTOS API Error Codes
IPC@Chip System Tasks
RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service Ox11: RTX_TASK_CREATE_WITOUT_RUN, Create a task
Parameters

AH
0x11 (= RTX_TASK_CREATE_NORUN)

BX:SI
Pointer to 16 bit storage for the taskiD, allocated by the caller

ES:DI
Pointer to a TaskDefBlock type data structure

Return Value

DX =0 success AX: 0, task is running, location [BX:Sl] contains the 16 bit taskID

DX!=0 failure AX: contains error code

Comments

The caller must fill in portions of the TaskDefBlock structure prior to making this call.

Difference to RTX_TASK CREATE call: The new task must be started with RTX RESTART_TASK call)

Related Topics

RTOS API Error Codes
IPC@Chip System Tasks
RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x02: RTX_TASK_KILL, Stop and kill specified task

You should not delete or kill a task, which is waiting, or is about to wait for a resource or counting

semaphore.
Parameters
AH

0x02 (= RTX_TASK_KILL)
BX

taskID

Return Value

DX =0 success AX: 0, task is terminated
DX!=0 failure AX: contains error code

Related Topics
RTOS API Error Codes

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x03: RTX_TASK_DELETE, Remove a task from the system

Remove specified task from system.

Parameters

AH
0x03 (= RTX_TASK_DELETE)

BX
taskID

Return Value

DX =0 success AX: 0, task is removed
DX!=0 failure AX: contains error code

Comments

You should not delete or kill a task which is waiting, or is about to wait for a resource or counting
semaphore.

After making this call, the taskID is no longer valid. A task can remove itself.
Related Topics

RTOS API Error Codes
RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x04: RTX_GET_TASKID, Get ID of the currently executing task
Get ID of the currently executing task
Parameters

AH
0x04 (= RTX_GET_TASKID)

Return Value
DX=0 (success always) AX: contains the TaskID

Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x05: RTX_SLEEP_REQ. Sleep unconditionally for a wake request

The calling task will be suspended until some other task issues a RTX_WAKEUP_TASK call to wake this
calling task.

Parameters

AH
0x05 (= RTX_SLEEP_REQ)

Return Value

DX=0 (always success) AX: 0
Comments

No return from this call occurs until task wakes up again.
Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x06: RTX_ WAKEUP_TASK, To wake up a task
To wake up a task known to be waiting because of an RTX_SLEEP_REQ or RTX_SLEEP_TIME call.
Parameters

AH
0x06 (= RTX_WAKEUP_TASK)

BX
taskID

Return Value

DX =0 success AX: contains the TaskID
DX!=0 failure AX: contains error code

Related Topics
RTOS API Error Codes

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x07: RTX_END_EXEC, End execution of a task by itself

End execution of a task by itself, if any task is waiting for finish processing its message (see
RTX _SEND_ DIRECT MSG) the Chip-RTOS wakesautomatically this task. This call could only be used

to termintate the task which is making the call.

Parameters

AH
0x07 (= RTX_END_EXEC)

Return Value

There is no return from this function
Comments

This call should be used at the end of a task’s function.
Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x08: RTX_CHANGE_PRIO, Change priority of a task
Parameters

AH
0x08 (= RTX_CHANGE_PRIO)

BX
tasklD

CX
priority, range 3 to 127 inclusive (3 is highest priority)

Return Value

DX =0 success AX: 0 DX!=0 failure AX: contains error code
Comments

An out of range priority value (CX) will be limited to range 3..127 inside this function.
Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x14: RTX _CREATE_SEM, Create a semaphore
Parameters

AH
0x14 (= RTX_CREATE_SEM)

BX:SI
Pointer to 16 bit storage allocated by caller for a semaphorelD

CX
Initial value

ES:DI
Pointer to 4 character unique name tag for the new semaphore

Return Value

DX =0 success AX: 0, Location referenced by [BX:SI] contains the unique semaphorelD
DX!=0 failure AX: contains error code

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x15: RTX _DELETE_SEM, Delete a semaphore
Parameters

AH
0x15 (= RTX_DELETE_SEM)

BX
ID of the semaphore acquired by RTX_CREATE_SEM

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x16: RTX_FREE_RES, Unconditionally free a resource semaphore
The resource's use count is set to zero and the resource freed
Parameters

AH
0x16 (= RTX_FREE_RES)

BX
ID of the resource semaphore acquired by RTX_CREATE_SEM

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x17: RTX_GET_SEM, Get use of a counting semaphore (no wait)
This call returns with an error, if the semaphore is in use by another caller
Parameters

AH
0x17 (= RTX_GET_SEM)

BX
ID of the semaphore acquired by RTX_CREATE_SEM

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, semaphore is in use

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x18: RTX_RELEASE_SEM, Release a resource semaphore

This call returns with an error, if the semaphore is in use by another caller

Parameters

AH
0x18 (= RTX_RELEASE_SEM)

BX
ID of the resource semaphore acquired by RTX CREATE_SEM

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x19: RTX_RESERVE_RES, Get use of aresource semaphore

This call waits for a defined time to reserve a semaphore and returns
with an error, if the semaphore is in use by another caller.
The callers wait in FIFO order for the semaphore.

Parameters

AH
0x19 (= RTX_RESERVE_RES)

BX
ID of the semaphore acquired by RTX CREATE_SEM

ES:DI
Pointer to buffer, stored the timeout in milliseconds
if *timeout == 0, the caller waits forever for the resource

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, semaphore is in use

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service Ox1A: RTX_SIGNAL_SEM, Signal a counting semaphore

The semaphore will be given to the task which is waiting
at the head of the wait queue of this semaphore.

Parameters

AH
Ox1A (= RTX_SIGNAL_SEM)

BX
ID of the semaphore acquired by RTX_CREATE_SEM

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x1B: RTX_WAIT_SEM, Wait on a counting semaphore

This call waits for a defined time of a semaphore and returns
with an error, if the semaphore is in use by another caller.
The callers wait in FIFO order of the semaphore.

Parameters

AH
0x1B (= RTX_WAIT_SEM)

BX
ID of the semaphore acquired by RTX_CREATE_SEM

ES:DI
Pointer to long buffer, stored the timeout in milliseconds
if *timeout == 0, the caller waits forever for the resource

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, semaphore is in use

Related Topics

RTOS Semaphore Services
RTOS API Error Codes

Top of list
Index page

Interrupt OXAD service 0x28: RTX_GET_TIMEDATE, Get system time and date
Parameters

AH
0x28 (= RTX_GET_TIMEDATE)

BX:SI
Pointer to Ti meDat e_St r uct ur e type allocated by user.

Return Value
DX=0 success AX: 0, Location at [BX:Sl] contains system date and time
Related Topics

RTOS Time/Date Services
TimeDate_Structure type definition

Top of list
Index page

Interrupt OXAD service 0x29: RTX_SET_TIMEDATE, Set system time and date
Parameters

AH
0x29 (= RTX_SET_TIMEDATE)

BX:SI
Pointer to Ti meDat e_St r uct ur e type filled in by user.

Return Value
DX=0 success AX: 0
Comments

The Day Of Week field (. dow) in Ti neDat e_St r uct ur e need not be set by caller. This API function
computes this field based on the other member data.

Values for time/date supplied by the caller are not checked for validity.

Related Topics
RTOS Time/Date Services

TimeDate_Structure type definition

Top of list
Index page

Interrupt OXAD service Ox2A: RTX_GET_TICKS, Get tick count of system clock
Accesses the system clock tick count.
Parameters

AH
0x2A (= RTX_GET_TICKS)

BX:SI
Pointer to an unsigned long where the tick count will be stored.

Comments
The system clock runs at 1000 Hz. So each tick represents 1 millisecond.
Related Topics

RTOS Time/Date Services

Top of list
Index page

Interrupt OXAD service 0x09: RTX_ACCESS_FILESYSTEM, Enable file access for the
calling task

Parameters

AH
0x09 (= RTX_ACCESS_FILESYSTEM)

Return Value

DX =0 success AX: 0
DX!=0 failure (Mostly to many processes with fileaccess)

Comments
If DX==-3, file access is enabled, but reserving a data entry for findfirst/findnext failed.
Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service OxOA: RTX_GET _TASK_STATE, Get state of a task
Parameters

AH
OX0A (= RTX_GET_TASK_STATE)

ES:DI
Pointer to 4 character uniqgue name tag of the task whose state information is desired

DS:SlI
Pointer to Task_St at eDat a type structure, allocated by the user

Return Value

DX =0 AX: contains taskID

Task_St at eDat a structure at [DS:Sl] contains the current task state data
DX!=0 AX:0, task monitoring is not enabled
DX!=0 AX:!=0, task not found

Comments

For using this function the task monitoring mode must be enabled.
Related Topics

Task St at eDat a structure definition

RTOS Task Control Services
Start Task Monitor API call

Top of list
Index page

Interrupt OXAD service OxOB: RTX_GET_TASK_LIST, Get list of current tasks in the
system

Parameters

AH
OXOB (= RTX_GET_TASK_LIST)

ES:DI
Pointer to array of TaskLi st type structures allocated by user.

CX
length of the list

Return Value
DX=0, BX = number of tasks listed in [ES:DI] array.
Comments

The caller must allocate sufficient buffer space at [ES:DI] to allow all tasks to be reported, including those
created by the system.

Related Topics

TaskLi st structure definition
RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x0C: RTX_START_TASK_MONITOR, Enable task monitoring
Parameters

AH
0x0C (= RTX_START_TASK_MONITOR)

Return Value
DX=0, AX=0
Comments

This function installs a task timing function in the 0x13 timer interrupt, which will poll at 1000 Hz to check
which task is currently executing. (Data collected by this timing function will provide a coarse indication
of which tasks are occupying the CPU.)

Related Topics
RTOS Task Control Services

Stop Task Monitor API call

Top of list
Index page

Interrupt OXAD service 0xOD: RTX_STOP_TASK_MONITOR, Disable task monitoring
Parameters

AH
0x0OD (= RTX_STOP_TASK_MONITOR)

Return Value
DX=0, AX=0
Comments

This function restores the system's original 0x13 timer handler, removing any task timing function
installed by RTX_START_TASK_MONI TOR call.

Related Topics
RTOS Task Control Services

Start Task Monitor API call

Top of list
Index page

Interrupt OXAD service OXOE: RTX SUSPEND_TASK, Suspend a task

Suspend the execution of a task until some other task calls RTX RESUME_TASK to resume the task.

Parameters

AH
OXOE (= RTX_SUSPEND_TASK)

BX
taskiD (value from RTX TASK CREATE call)

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, invalid taskID

Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service OxOF: RTX_RESUME_TASK, Resume a task
Enable the execution of a suspended task
Parameters

AH
OXOF (= RTX_RESUME_TASK)

BX
taskID (value from RTX_TASK_CREATE call)

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, invalid taskID

Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x10: RTX_RESTART_TASK, Restart a task

Restart a killed task (killed with RTX_TASK KILL call)

Parameters

AH
OXOF (= RTX_RESTART_TASK)

BX
taskID

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, invalid taskID

Related Topics

RTOS Task Control Services

Top of list
Index page

Interrupt OXAD service 0x12: RTX_GET _TASK _STATE_EXT, Get state without task
monitoring mode

Parameters

AH
0x12 (= RTX_GET_TASK_STATE_EXT)

ES:DI
Pointer to 4 character uniqgue name tag of the task whose state information is desired

Return Value

DX =0 AX: contains tasklD BX: contains the state of task (see below)
DX!=0 AX:!=0, task not found

Comments

The t ask St at e bit field is coded as follows:
BO: timer wait (used with other bits)
B1: trigger wait (i.e. idle)
B2: semaphore wait
B3: event group wait
B4: message exchange wait
B5: message send wait
B6: suspended (waiting for resume)
B7: waiting for wakeup

B8 - B15 internal use only

Related Topics

API function RTX GET TASK STATE - Get state of a task

Top of list
Index page

Interrupt OXAD service 0x20: RTX_DISABLE _TASK_ SCHEDULING, Disable the task
scheduler

The task which call this function wont be interrupted by other tasks until
RTX_ENABLE_TASK_SCHEDULER will be called. Interrupts are enabled while this process. Installed
Timer procedures wont be executed. The watchdog must be triggered (using the Hardware API Call
Refresh Watchdog) by the user until the task scheduler is disabled. API fucntions which calls another

task (like TCPIP API functions) and also the API Sleep function must not used.

Parameters

AH
0x20 (= RTX_DISABLE_TASK_SCHEDULING)

Comments

NOTE: Must be followed by a call to RTX_ENABLE _TASK_SCHEDULER as soon as possible to enable
the task scheduler.

Related Topics

API function RTX ENABLE TASK SCHEDULER - Enables the task scheduler

Top of list
Index page

Interrupt OXAD service 0x21: RTX_ENABLE_TASK_SCHEDULING, enable the task
scheduler

Must be follow to a RTX_DISABLE_TASK_ SCHEDULER to enable the task switching again.
Parameters

AH
0x21 (= RTX_ENABLE_TASK_SCHEDULING)

Related Topics

API function RTX DISABLE TASK SCHEDULER - Disables the task scheduler

Top of list
Index page

Interrupt OXAD service 0x30: RTX_INSTALL_TIMER, Install atimer procedure

Install a timer procedure that will be periodically executed by the kernel.
Parameters

AH
0x30 (= RTX_INSTALL_TIMER)

ES:DI
Pointer to a Ti mer Proc_St ruct ur e type

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, no free timer available

Comments

See the Ti mer Proc_St ruct ur e type description for instructions on how to call this function.

A timer ID is output to the 16 bit location referenced by t i mer | D member of your
Ti merProc_Structure.

You must call the RTX_START_TIMER API function to get the kernel to start calling your new timer
procedure.

Important:
Timer procedures are executed on the stack of the kernel task at a high priority, so they should be
as short as possible. Avoid calling large functions like pri ntf ().

Related Topics

Ti mer Proc_St ruct ur e definition
RTOS Timer Procedures

Top of list
Index page

Interrupt OXAD service 0x31: RTX_REMOVE_TIMER, Remove a timer procedure

Stop execution and remove a timer procedure.

Parameters

AH
0x31 (= RTX_REMOVE_TIMER)

BX
timerID produced by the RTX INSTALL TIMER call

Return Value

DX =0 success AX: 0
DX!=0, failure AX contains error code, invalid timerID.

Comments
It is possible to restart a timer procedure after removing it from the system.
Related Topics

RTOS Timer Procedures

Top of list
Index page

Interrupt OXAD service 0x32: RTX_START_TIMER, Start periodic execution of a timer
procedure

Start periodic execution of a timer procedure.
Parameters

AH
0x32 (= RTX_START_TIMER)

BX
timerID produced by the RTX_INSTALL TIMER call

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, invalid timerID.

Related Topics

RTOS Timer Procedures

Top of list
Index page

Interrupt OXAD service 0x33: RTX_STOP_TIMER, Stop execution of a timer procedure
Stop execution of a timer procedure
Parameters

AH
0x33 (= RTX_STOP_TIMER)

BX
timerID produced by the RTX INSTALL TIMER call

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, invalid timerID.

Related Topics

RTOS Timer Procedures

Top of list
Index page

Interrupt OXAD service 0x40: RTX_CREATE_EVENTGROUP, Create an event group
Parameters

AH
0x40 (= RTX_CREATE_EVENTGROUP)

BX

Initial value of the 16 event flags of the group.
ES:DI

Pointer to 16 bit storage for the unique group ID integer
DS:SI

Pointer to unique four character tag

Return Value

DX =0 success AX: 0, location at [ES:DI] contains the unique group ID.
DX!=0 failure AX: contains error code, no free event group entry available

Comments

Each event group includes 16 event flags, the maximum number of event groups is 2. Each event group
has a unique ID. You can provide a unigue 4 character tag to identify the event group. Each eventin a
group is represented by a Boolean flag representing the state of the event. The 16 Boolean flags are
represented in one 16-Bit word. If a event flag (bit) has the value one, the event has occurred. A zero

value means, that the event has not occurred.

Related Topics

RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x41: RTX DELETE _EVENTGROUP, Delete an event group

Parameters

AH
0x41 (= RTX_DELETE_EVENTGROUP)

BX
Event group ID acquired by RTX CREATE_EVENTGROUP call.

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, event group still in use or invalid group ID

Comments
You should not delete an event group which is in use by another task or timer procedure.
Related Topics

RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x42: RTX_SIGNAL_EVENTS, Signal one or more events in a group

Signal that one or more events in a group has occurred by setting the event flags.

If any tasks are waiting on these events, the Event Manager will now wake them up.

Parameters

AH
0x42 (= RTX_SIGNAL_EVENTS)

BX

Event group ID acquired by RTX CREATE EVENTGROUP call.
CX

16-Bit mask identifying the flags of interest in the group.
DX

Event value for the 16 event flag/bits. Only the bits marked '1' in the CX mask are relevant in DX.

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Comments

Tasks wake up only on the 0 to 1 (=occurred) event bit transitions. The resetting of an event bit will not
cause any task waiting on that event to wake up.

Related Topics

RTOS API Error Codes
RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x43: RTX_WAIT_EVENTS, Wait for events in a group

The calling tasks are waiting until the Event Manager wakes them up (the events has occurred) or the
specified timeout was reached

Parameters

AH
0x43 (= RTX_WAIT_EVENTS)

BX
Event group ID acquired by RTX CREATE_EVENTGROUP call.

ES:DI
Pointer to user RTX Wait _Event type structure

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Comments

The user has to fill in the RTX_Wai t _Event structure before making this call.

Related Topics

RTX _Wai t _Event type definition
RTOS API Error Codes
RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x44: RTX_GET_EVENTGROUP_STATE, Read the current event
states in a group

Return the current state of the 16 event flags (bits) of a specified event group
Parameters

AH
Ox44 (= RTX_GET_EVENTGROUP_STATE)

BX
Event group ID acquired by RTX CREATE EVENTGROUP call.

ES:DI
Pointer to 16 bit location to receive the current state of the event flags

Return Value

DX =0 success AX: 0, Location at [ES:DI] contains the event states of the specified group
DX!=0 failure AX: contains error code, invalid group 1D

Related Topics

RTOS API Error Codes
RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x45: RTX_GET_EVENT_FLAGS, Get the saved event flags

Return the state of the 16 event flags as they were at the time the calling task most recently completed a
RTX_WAIT_EVENTS call.

Parameters

AH
0x45 (= RTX_GET_EVENT_FLAGS)

Return Value

DX =0 success AX: contains the saved event states
Comments

The returned event flags apply to this task's most recent event wait wake up or timeout.
Related Topics

RTOS API Error Codes
RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x46: RTX_FIND _EVENTGROUP, Find an event group
Find an event group by specified name tag and return the unique event group ID.
Parameters

AH
0x44 (= RTX_FIND_EVENTGROUP)

ES:DI
Pointer to 4 character name tag

Return Value

DX =0 success AX: contains the event group ID
DX!=0 failure AX: contains error code, not found

Comments
The name string at [ES:DI] does not need to be zero terminated.
Related Topics

RTOS API Error Codes
RTOS Event Manager

Top of list
Index page

Interrupt OXAD service 0x50: RTX_CREATE_MSG, Create a message exchange

A message exchange must be created by an application before it can be used. The Message Exchange
Manager returns a 16-Bit unique ID to the caller. You can provide a unique 4 character tag to identify
the message exchange.

Parameters

AH
0x50 (= RTX_CREATE_MSG)

ES:DI
Pointer to user RTX_Msg type structure

Return Value

DX =0 success AX: 0, RTX_Msg structure contains the new msgID
DX!=0 failure AX: contains error code

Comments

The user has to fill in portions of the RTX_Msg structure prior to calling here.

The maximum number of message exchanges supported by the system is ten.

Related Topics

RTX_Msg type definition
RTOS API Error Codes
RTOS Message Exchange Manager

Top of list
Index page

Interrupt OXAD service 0x51: RTX_DELETE_MSG, Delete a message exchange
Parameters

AH
0x51 (= RTX_DELETE_MSG)

BX
Message exchange ID acquired by RTX CREATE MSG call.

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code, message exchange still in use or invalid ID

Comments
You should not delete a message exchange which is in use by another task or timer procedure.
Related Topics

RTOS API Error Codes
RTOS Message Exchange Manager

Top of list
Index page

Interrupt OXAD service 0x52: RTX_SEND_MSG, Send message
Send provided message to a specified message exchange.
Parameters

AH
0x52 (= RTX_SEND_MSG)

BX
Message exchange ID acquired by RTX CREATE MSG call.

CX

Message priority (mailbox) O - 3 where 0 is highest priority

ES:DI
Pointer to a 12 byte message to be sent

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Comments

If one or more tasks are waiting at the exchange for a message, the message will be immediately given
to the task waiting at the head of the exchange's wait queue.

The format of the 12 byte message being sent is defined by the application program.
Related Topics

RTOS API Error Codes
RTOS Message Exchange Manager

Top of list
Index page

Interrupt OXAD service 0x53: RTX_GET_MSG, Get message
Get a message from a specified message exchange.
Parameters

AH
0x53 (= RTX_GET_MSG)

BX

Message exchange ID acquired by RTX CREATE _MSG call.

ES:DI
Pointer to a 12 byte user buffer for storing the message (if any)

Return Value

DX =0 success AX: 0, Location at [ES:DI] holds the message
DX!=0 failure AX: contains error code, invalid ID or -28: no message available

Comments

This function returns immediately with ax= -28 if no message is available.

Related Topics
RTOS API Error Codes

RTOS Message Exchange Manager

Top of list
Index page

Interrupt OXAD service 0x54: RTX_WAIT_MSG, Wait for a message

This function parks the calling task on the specified message exchange message queue. The Message
Exchange Manager will then wake up this task when either a message is available or a specified wait
period timeout expires.

Parameters

AH
0x54

ES:DI
Pointer to user RTX_Wai t _Msg type structure

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code

Comments

The user must fill in the RTX_Wai t _Msg structure prior to calling here.

To wait in FIFO order, all callers have to wait with the same priority

Related Topics

RTX _Wai t _Msg type definition
RTOS API Error Codes
RTOS Message Exchange Manager

Top of list
Index page

Interrupt OXAD service 0x55: RTX_FIND_MSG, Find a message exchange

Find a message exchange by specified name tag and return the unique exchange ID.

Parameters

AH
0x55 (= RTX_FIND_MSG)

ES:DI
Pointer to 4 character name tag (no zero terminator needed)

Return Value

DX =0 success AX: contains the message exchange ID
DX!=0 failure AX: contains error code, not found

Comments

If more than one message exchange was created with the same tag, you will get back the message
exchange ID of one with this tag, but which one is not certain.

Related Topics
RTOS API Error Codes

RTOS Message Exchange Manager

Top of list
Index page

End of document

BELCK

Beck IPC GabH

Web server CGl interface - BIOS V1.02 Beta

IPC@Chip Documentation Index

CGI API News

CGI API

The CGI ("Common Gateway Interface") APl uses interrupt OXAB with a service number in the high order byte of
the AX register (AH). This interface provides access to the CGI implementation of the IPC@Chip Web server.

Topics

Web Server Overview
Web Server FileTypes

CGI API News

CGI API Error Codes

CGI API DeveloperNotes
CGI API ExamplesAvailable
CGI API Data Structures

APl Functions Available

. Interrupt OxAB function 0x01: CGI INSTALL, Install a CGI function

. Interrupt OXAB_ function 0x02: CGlI REMOVE, Remove a CGI function
Interrupt OxAB_function 0x03: CGI_SETMAIN, Set a new main page
Interrupt OxAB_function_0x04: CGI_SETROOTDIR, Set Web server's root directory

. Interrupt OXAB_function 0x05: CGlI GETROOTDIR, Get Web server's root directory

. Interrupt OxAB function 0x06: CGlI GETMAIN, Get main page name

. Interrupt OXAB function 0x07: CGlI GETFORMITEM, Split a formular into name and value
Interrupt OXAB_function 0x08: CGI_FINDNEXTITEM, Return the address of the next formular tag
Interrupt OXAB_function_0x09: CGI_INSTALL PAS, Install a Turbo Pascal CGI procedure

Interrupt OXAB service 0x01: CGI_INSTALL, Install a CGI function

Parameters

AH

http://www.bcl.de/

0x01 (= CGIl_INSTALL)

DX:SI
Pointer to a temporary CG _Ent ry type structure.

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code CGI_NO_FREE_ENTRY or CGI_INVALID_METHOD

Comments

This API function makes a copy of the information in the provided CA _Ent r y structure, so your
structure at [DX:SI] need not be persistent.

Related Topics

CGI API Error Codes
cgi stat command line
CGI INSTALL PAS API Function, for Pascal CGIl Procedures

Top of list
Index page

Interrupt OXAB service 0x02: CGI_REMOVE, Remove a CGl function
Parameters

AH
0x02 (= CGI_REMOVE)

DX:SI
Pointer to the null terminated URL path name

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code CGI_NOT_FOUND

Comments

The CGI function to be deleted is identified by the provided URL string. It is also possible to remove the
two predefined cgi functions main.htm and ChipCfg from the table.

Related Topics

CGI API Error Codes
cgi stat command line

Top of list
Index page

Interrupt OXAB service 0x03: CGI_SETMAIN, Set a new main page
Parameters

AH
0x03 (= CGl_SETMAIN)

DX:SlI
Pointer to name of new main page

Return Value

DX =0 success AX: 0
DX!=0 failure AX: error code CGI_INVALID NAME

Comments

The string at [DX:SI] is null terminated with a maximum length of 64 characters (not counting the
terminating zero).

Related Topics

CGl GETMAIN API Function
CGI API Error Codes

Top of list
Index page

Interrupt OXAB service 0x04: CGI_SETROOTDIR, Set Web server's root directory
Parameters

AH
0x04 (= CGl_SETROOTDIR)

DX:SlI
Pointer to the name of new root directory

Return Value

DX =0 success AX: 0
DX!=0 failure AX: error code CGI_INVALID_DIR

Comments

The string at [DX:Sl] is null terminated with a maximum length of 64 characters (not counting the
terminating zero).

Related Topics

CGl GETROOTDIR API Function
CGI API Error Codes

Top of list
Index page

Interrupt OXAB service 0x05: CGI_GETROOTDIR, Get Web server's root directory
Parameters

AH
0x05 (= CGl_GETROOTDIR)

Return Value

DX=0 AX=0, ES:DI contains pointer to root directory name
Comments

The string referenced by [ES:DI] is null terminated and is in the RTOS's data space.
Related Topics

CGI_SETROQOTDIR API Function

Top of list
Index page

Interrupt OXAB service 0x06: CGI_GETMAIN, Get main page name
Parameters

AH

0x06 (= CGl_GETMAIN)
Return Value

DX=0 AX=0, ES:DI contains pointer to current main page name
Comments

The string referenced by [ES:DI] is null terminated and is in the RTOS's data space.
Related Topics

CGl SETMAIN API Function

Top of list
Index page

Interrupt OXAB service 0x07: CGI_GETFORMITEM, Split a formular into name and value

Parse the argument buffer to obtain name and value.

Parameters

AH
0x07 (= CGI_GETFORMITEM)

BX:SlI
Pointer to argument buffer to be parsed.

ES:DI
Pointer to a For m t emtype structure

Return Value

DX=0 AX=0, User buffers referenced by pointers in For ml t emstructure at [ES:DI] are filled in with name
and value

Comments

On initial call, the argument buffer pointer provided by the caller in BX:Sl is a copy of the
f Ar gunment Buf f er Pt r member of the r bCgi structure passed by the Web server to the CGI callback

function. On subsequent calls here to pick up additional formular, the pointer returned from the
CG _FI NDNEXTI TEMAPI call can be used here.

The caller must set the two members of the For m t emstructure prior to calling here. Both pointers
reference buffers allocated by the user, which will receive strings produced by this API call.

See example submit.c.

Related Topics

CGI_FINDNEXTITEM API Function

Top of list
Index page

Interrupt OXAB service 0x08: CGI_FINDNEXTITEM, Return the address of the next formular
tag

Most formulars have more than one item, this function searches for the next form item in a CGI request
argument string. This function can only be used after a CGIFORMITEM API call. (See example

submit2.c)

Parameters

AH
0x08 (= CGI_FINDNEXTITEM)

BX:SI
CGl request argument pointer

Return Value

DX=0 AX=0, ES:DI: pointer to the found item
DX=-1 AX=0, no next item was found

Comments

The CGI request argument buffer pointer provided by the caller in BX:Sl is initially taken from the r bCgi
structure passed by the Web server to the CGlI callback function.

This function scans the buffer at [BX:Sl] for an ampersand character, '&', and if found returns a pointer to
the character in the string following the ampersand.

The strings must be null terminated.

Related Topics

CGl_GETFORMITEM API Function

Top of list
Index page

Interrupt OXAB service 0x09: CGI_INSTALL_PAS, Install a Turbo Pascal CGI procedure

Special install function for Turbo Pascal CGI procedures

Parameters

AH
0x09 (= CGI_INSTALL_PAS)

DX:SI
Pointer to a temporary CG _Ent ry type structure.

Return Value

DX =0 success AX: 0
DX!=0 failure AX: contains error code CGI_NO_FREE_ENTRY or CGI_INVALID_METHOD

Comments

This API function makes a copy of the information in the provided CA _Ent r y structure, so your
structure at [DX:Sl] need not be persistent.

Related Topics

CGI INSTALL API Function, for C CGI Procedures

Top of list
Index page

End of document

BELCK

Beck IPC GabH

CGI APl Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

CGI API News

The following extensions to the CGI API are available in the indicated BIOS revisions.

New in version 0.65: Added install function for Turbo Pascal CGI procedures

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

Web Server Overview - BIOS V1.02 Beta

IPC@Chip Documentation Index CGI API News

Web Server Overview
The explanations here assume the reader is somewhat familiar with the HTTP protocol.
Web Server / CGl topics:

. CGIAPI Functions

. CGlin the IPC@Chip

Built-InCGI Functions
Buildinga CGI function using a C compiler

CGI API Functions

The CGI APluses interrupt OXAB, enabling the application programmer to install their own DOS program

CGl functions in the IPC@Chip Web server's CGl table. This make it possible to visualize and control an
application running in the
IPC@Chip via an Internet browser, using all features of modern Internet technology.

Top of list
Index page

CGl in the IPC@Chip

The Web server of the IPC@Chip uses an internal CGlI table. The CGI table is an array of
CG _Ent rytypestructures. Defined for each entry is the URL name, the expected HTTP method(Get,

Head or Post) and a pointer to a functionwhich will be executed if a matching browser request arrives at
the IPC@Chip.

Top of list
Index page

http://www.bcl.de/

Built-In CGI Functions

There are two pre-installed CGI functions in the IPC@Chip, one of them named "ChipCfg". The preset
entry in the internal CGI table has the name "ChipCfg" (Note: URL names of CGI are case sensitive!). A
CGil callback function for this entry supports the method "Get" by producing a Web "file" in RAM. This
function is executed if a browser makes the following request to an IPC@Chip device with an IP address
of 192. 168. 205. 4:

http://192. 168. 205. 4/ Chi pCf g

The CGI function then produces a HTML page in memory which contains specific configuration data, like
IP address, subnet mask, serial number, etc..

Top of list
Index page

Building a CGl function using a C compiler

A CGl function built with the Borland C compilers must be declared as:
voi d huge _pascal CA _Func(rpCgi far *Cgi Request);

Using the Microsoft Visual C compilers the CGI functions are declared as:
void far _saveregs _|oadds _pascal CA _Func(rpCgi far *Cgi Request);

The Web server calls this function with the address of a r pCgi typedata structure, which contains all

needed information about the browser request. Another part of this structure is the response
fields. These fields must be set by the CGlI function. They hold information needed by the Web server.

Top of list
Index page

End of document

BELCK

Beck IPC GabH

CGl File Types - BIOS V1.02 Beta

IPC@Chip Documentation Index CGI API News

CGl File Extensions

Here is a mapping between values for the f Dat at ype member of the r pCA type and file extensions supported
by the IPC@Chip Web server.

f Dat at ype File
Val ue Ext ensi on Web Server File Type

0 *. htm text/HTML

1 * gif i mage/ gi f

3 * . txt text/plain

4 *.ipg i mage/ j peg

5 * . pct i mage/ pi ct

6 *tif i mage/tiff

10 *.CSS text/css

11 *oxm text/xm

12 * . wav audi o/ wav

13 * . pdf appl i cati on/ pdf

14 * jar appl i cation/java-archive
16 *wml text/vnd. wap. wm

17 *.vnp i mage/ vnd. wap. wbnp

18 *.vne appl i cation/vnd. wap. wr c
19 * . VNB text/vnd. wap. wn scri pt
20 * WK text/vnd. wap. wn scriptc
7 i mage/ png

8 appl i cation/ x-wwform url encoded
9 application/ipp

15 application/octet-stream

The default type is application/octet-stream (f Dat at ype = 15)

Top of list
Index page

http://www.bcl.de/

End of document

BELCK

Beck IPC GabH

CGIl Error Codes - BIOS V1.02 Beta

IPC@Chip Documentation Index

CGI API Error Codes

All error codes listed here are defined in the header file, cgi.h.

CGil error codes returned by CGI API calls in the DX-Register

0 = Cd _ENCERROR -> success
-1 = CAd _ERROR -> error, AX contains error code
-2 = CA _NOT_SUPPORTED -> invalid function number was in the AH-reg.

CGl specific error codes returned by CGI API calls in the AX register when DX register was non-zero
(error indication):

-1 = Cd _I NVALI D METHOD -> invalid method

-2 = CA _I NVALI D_NAME -> invalid URL name

-3 = Cd _INVALID DIR -> invalid directory

-4 = CA _NO FREE ENTRY -> no space in CGl table
-5 = CA _NOT_FOUND -> entry not found

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

CGI Application Developers Note - BIOS V1.02 Beta

IPC@Chip Documentation Index CGI News

Developer Notes

Since Bios version 0.65, we added five new content types for CGI.

Since BIOS version 0.65, it is possible to write CGI procedures with Turbo Pascal. Consequently the parameter
passing mechanism for CGl functions has been changed to that used by Pascal. C programmers will now need
to use the following forms of CGI functions.

A CGl function using the Borland C compilers must be declared as follows:
voi d huge _pascal CGE _Func(rpCgi far *Cgi Request);
... and using the Microsoft Visual C compilers:

void far _saveregs _|oadds _pascal CGA _Func(rpCgi far *Cgi Request);

CGI API Listing

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

CGIl Examples Available - BIOS V1.02 Beta

IPC@Chip Documentation Index CGI News

CGI Examples

Available CGI APl examples in C:

1. exanpl el. ¢ - Builds an HTML page

2. exanpl e2. ¢ - Builds a dynamic HTML page

3. dk40cgi.c - Reads DK40 I/O pins

4. dk40_set. c - Reads and writes DK40 I/O pins

5. secure.c - Example of password protected page
6. submit.c - Building of formular

7.

submt2.c - Formulars with multiple items

Also there are source files (cgiapi.c, cgiapi.h) containing wrapper functions which provide a C-Library interface to
the assembly language/software interrupt based CGI API .

Available Turbo Pascal examples:

1. exanpl el. pas - Builds an HTML page
2. exanpl e2. pas - Builds a dynamic HTML page

Examples in C

For understanding CGl in the IPC@Chip we provide some example programs written in C. The examples are
compiled with various versions of Borland and Microsoft compilers. Which compiler version was used for a
particular example is stated within the example's source files. The include file cgi . h contains all the required
type definitions and constants.

1. examplel.exe
The CGI function installed by this program produces a HTML page which contains some of the browser's
request parameters. This program was tested and compiled with Borland C 3.0 and Microsoft Visual C
1.52 The compiler differences are described in the source files.

Examples browser inputs:
http://192. 168. 205. 4/ exanpl el
http://192. 168. 205. 4/ exanpl el?Ar gunent

2. example2.exe

http://www.bcl.de/

We build a dynamic HTML page which contains the current value of a counter incremented in the main
loop of the program. This program is tested and compiled with Borland C 3.0 and Microsoft Visual C
1.52. The compilers differences are described in the source files.

Example browser input:
http://192. 168. 205. 4/ exanpl e2

3. dk40cgi.exe
The CGI function of this program produces a HTML page which contains the current values of the DK40
I/O pins.
Example browser inputs:
http://192. 168. 205. 4/ dk40

4. dk40_set.exe
Demonstrates set and reset control over the DK40 output pins via browser.

Example browser input:
http://192. 168. 205. 4/ dk40

5. secure.exe
This is an example of a protected page.

The first browser input ...
http://192. 168. 205. 4/ dk40_secure
requires the input of a valid username and password, e.g.:
User nane: user
Passwor d: password

6. submit.exe
The building of formulars is demonstrated here.
7. submit2.exe
The building of formulars with more than one item is demonstrated here.

Important:
1. The recommended memory model for DOS programs is "Large".
2. CGil functions should be programmed as short as possible, without long or endless waits.
3. CGl functions compiled with Borland C must be declared as "huge".
4. CGI functions compiled with Microsoft C must be declared as " far _saveregs _loadds".
5. Users of Microsoft Visual C must set the compiler option "struct member byte alignment" to "1 byte" or

must use "#pragma pack(1)" in their source.
The command cgi stat atthe IPC@Chip command prompt lists all CGI functions installed.

URL names for CGI functions are case-sensitive.
8. If you use Microsoft C-Compilers then increase the Web server's WEBSERVERSTACK stack size value

inthe chi p. i ni file. The default stack size of the Web server task is 2048 Bytes. Programmers of
CGl functions who are using Microsoft C-Compilers with C-Library functions, e.g. spri nt f , which
requires a lot of stack space should increase this allocation to 6144 (6 Kbytes). More stack space for the
Web server task is also required if your CGI function uses a large amount of stack for automatic data
(local variables) declared inside the CGl function call.

N o

Building Turbo Pascal CGI procedures

Since BIOS version 0.65, it is possible to write CGI procedures with Turbo Pascal
This is a little bit different from writing a CGlI function with the C compilers.

A Turbo Pascal program which contain a CGI procedure uses the same data structures (records)
as a C language CGil function.

Declaration of Turbo Pascal CGI procedures

A CGI procedure written with Turbo Pascal must be declared without any parameters and with the interrupt
declaration, e.qg.:

procedure Exanpl el Proc;interrupt;

The interrupt declaration will motivate the compiler to emit code that sets the CPU's DS data segment register on
entry to the procedure, thus allowing access to the Pascal program's data.

The IPC@Chip Web server handles the call to a Pascal CGlI function differently than it does the callto a C

language CGI function. One input parameter is needed by all CGI functions, C or Pascal. This one parameter
is a far pointer to a r pCgi type structure (or in Pascal, a record). When calling a C language CGl function this
pointer is pushed onto the stack using a normal parameter passing mechanism. For Pascal CGl functions this

pointer is instead passed in the CPU's ES:DI registers. Consequently this pointer must be recovered by the
Pascal program. This can be done as follows:

procedure Exanplel Proc;interrupt;
var
ESr eg) I nt eger;
Direg : | nt eger;
CA Request : rpCd ptr;

begi n
asm
nov ax, es
nmov Esr eg, ax
nmov ax, di
mov DI reg, ax
end;
Cd Request = ptr(ESreg, Direg);

end;
Installing a Pascal CGI procedure:

Pascal CGI procedure must installed at the start of the DOS program with the CGI INSTALL PAS API call.
(CGl functions written in C must still be installed with the standard CGI_INSTALL API.)

For better understanding of programming CGI with Turbo Pascal, we provide some example programs compiled
with Borland Pascal 7.0.

1. examplel.exe

The CGI function installed by this program produces a HTML page which contains some of the request
parameters.

Examples for browser inputs:
http://192. 168. 205. 4/ exanpl el
http://192. 168. 205. 4/ exanpl e1l?Ar gunent
2. example2.exe
We build a dynamic HTML page which contains the current value of a counter incremented in the main
loop of the program.

Browser inpute.g.: http://192. 168. 205. 4/ exanpl e2

End of document

BELCK

Beck IPC GmbH

Data Structures used in CGI API - BIOS V1.02 Beta

IPC@Chip Documentation Index

Data Structures

Here are the data structures used by the CGI API .
All constants and data structures are defined in the header file cgi.h

Notes:

. Byte alignment is required for all data structures used within the API.

Content :

. typedefCGIl Entry
. defineCGI HTTP Request
. typedefFormltem

. typedefrpCqi
CGI_Entry
typedef struct tag cgi _table
{
char *Pat hPt r; /1 Name of the page, URL
i nt met hod; /1 http nmethod: Get, Head or Post
RpCgi FuncPtr Cgi FuncPtr; // ptr to callback function for this page
} CA _Entry;
Comments

The members of the CG _Ent r y structure should be filled as follows.

Pat hPt r

This is a far pointer to a zero terminated URL address of the page. (URL's are case sensitive.)
met hod

This i ntis an enumeratorused to specify what HTTP method this CGI function supports.
Cgi FuncPtr

This is a far vector to the CGI function for this Web page. For Borland C compilers the
RpCgi FuncPt r type is:

http://www.bcl.de/

t ypedef void (huge _pascal *RpCgi FuncPtr) (rpCgi far *Cgi RequestPtr);

... and therefore the CGl function itself is declared as ...

voi d huge _pascal CQA _Func(rpCgi far *Cgi Request);

For Microsoft Visual C compilers the RpCgi FuncPt r type is:

typedef void far _saveregs _l| oadds _pascal

*Cgi Request Ptr);
... and the CGl function declared as ...

(*RpCgi FuncPtr) (rpCgi far

void far _saveregs _|oadds _pascal CA _Func(rpCgi far *Cgi Request);

Related Topics

API function CGIl INSTALL - Install a CGI function
rpCgi structure type

Top of list
Index page

CGI HTTP Request

#define Cgi HtpGet 1 [l Cgi request is HITP GET

#define Cgi Htt pHead 2 /1 Cgi request is HITP HEAD
#define Cgi Ht t pPost 3 /'l Cgi request is HITP POST
Comments

These defines are used as enumeration names for request methods.

Related Topics

method member of CGI_Entry type

Top of list
Index page

Formltem

typedef struct tag formitem

{
char *NamePt r ;
char *Val uePtr;
} Formtem
Comments

Both strings referenced here are null terminated.

Related Topics

API function CGl_GETFORMITEM - Split a formular into name and value

Top of list
Index page

rpCgoi

typedef struct {

//**

/1 Request fields (Read Only!!!l)

//**

unsi gned char f Connecti onl d; /1
i nt f Ht t pRequest ; /1
char *f Pat hPtr ; /1
char *f Host Ptr; /1
char *fRefererPtr; /1]
char *f Agent Ptr; /1
char *f LanguagePtr; /1
unsi gned | ong fBrowserDate; 11
char *f Argunent Buf fer Ptr; /1
| ong f Argunment Buf f er Length; //
char *f User NanmePtr; /1
char *f Passwor dPtr ; /1
| ong *f Renot el PPt r; I

/1

-- internal use only --
get, post, head

URL

Host :

(at tinme not supported)

(at time not supported)

(at tinme not supported)

Dat e: (internal)

Poi nter to argument buf

Length of argunent buf

User nanme from Aut hori zation

Password from Aut hori zati on

new at V1.00 Beta, points to the renotelP,
you nust split the octets

//**

-- internal, do not nodify --

Response httpnsg e.g. Cgi Htt pOk

Content type, e.g. text/HIM, text/plain
Pointer to the created page

Length of the page

-- internal,

-- internal,

do not nodify --
do not nodify --

/1 Response fields (Set by CA@ function)
//**
i nt f ResponsesSt at e; /1
i nt f Ht t pResponse; /1
i nt f Dat aType; /1
char *f ResponseBufferPtr; /1
| ong f ResponseBuf f erLength; //
unsi gned I ong f QbjectDate; /1
unsi gned i nt f Host | ndex; /1

} rpCgi, *rpCgiPtr;

Comments

f Dat aType

This is an enumeration type (disguised as a 16 bit integer) that specifies the filetype.

Related Topics

CGil Callback Function

Top of list
Index page

End of document

BELCK

Beck IPC GabH

RTOS API Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

RTOS API News

The following extensions to the RTOS API are available in the indicated BIOS revisions.

New in version 1.02B: Disable the task scheduler
New in version 1.02B: Enable the task scheduler
New in version 1.01B: Create a task without start
New in version 1.01B: Get state without task monitoring mode

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

RTOS Overview - BIOS V1.02 Beta

IPC@Chip Documentation Index

RTOS API News

RTOS Overview

The RTOS API services split into the following groups:

. TaskControl Services

. Semaphoreservices

. Time/ Date Services

. TimerProcedures

EventManager

MessageExchange Manager

Task Control Services

RTX

SLEEP_TI ME

RTX

TASK CREATE

RTX

TASK KI LL

RTX

TASK DELETE

RTX

GET_TASKI D

RTX

SLEEP REQ

RTX

WAKEUP TASK

RTX

END EXEC

RTX

CHANGE PRI O

RTX

ACCESS FI LESYSTEM

RTX

GET_TASK STATE

RTX

GET_TASK LI ST

RTX

START TASK MONI TOR

RTX

STOP_TASK MONI TOR

RTX

SUSPEND TASK

RTX

RESUVE TASK

RTX

RESTART TASK

RTX

TASK CREATE W THOUT

Sleep for a specified tine

Create and start a task

Kill a task

Renove a task fromthe system

Get 1D of the current running task

Sl eep, until a wake request

Wake a task, which is waiting

End execution of a task by itself
Change the priority of a task

Enable file access for the calling task
Get state of a task (task nonitoring)
Get state of a task

Start task nonitoring

Stop task nonitoring

Suspend a task

Resunme a task

Restart a killed task

RUN Create a task

RTX

GET_TASK STATE EXT

CGet state of a task (w thout task nonitoring)

http://www.bcl.de/

Top of list
Index page

Semaphore services

Semaphores are used to guarantee a task mutually exclusive access to a critical

resources. Semaphores synchronize asynchronous occurring activities. They are an essential part of a
multitasking system. A good description of multitasking systems and semaphores is available in the book
"Operating systems" from Andrew Tanenbaum.

The RTOS API provides two types of semaphores:
o A counting semaphore is a semaphore with an associated counter, which can be incremented
(signal) and decremented (wait). The resource controlled by the semaphore is free (available),
when the counter is greater than O.
o Aresource semaphore is a counting semaphore with a maximum of count of one. It can be used
to provide mutually exclusive access to a single resource. A resource semaphore is also called a
binary semaphore. It differs from a counting semaphore in one significant feature: The resource
ownership is tied to a specific task. No other task except the task owning the resource is allowed
to signal the associated semaphore to release the resource.
The counting and resource semaphores provide automatic timeout. Tasks can specify the maximum time
for waiting on a semaphore. The tasks wait in FIFO order for a resource. A semaphore is created with
RTX_CREATE_SEMservice call. The RTOS needs a unique four byte semaphore name and on success
returns a unique ID semaphore ID (or handle) to the caller. This ID identifies the semaphore and is
needed for other semaphore services.

Using a counting semaphore:

A counting semaphore is created by specifying an initial count greater or equal to zero in the call of
serviceRTX_CREATE_SEM If a semaphore is initialized with a value n, it can be used to control access
to n resources, e.g. a counting semaphore with the initial value three assures, that no more than three
tasks can own a resource at any one time. Access to a resource controlled by a counting semaphore is
acquired with a call to serviceRTX_WAI T_SEMor serviceRTX_GET_SEM If the resource is available the
RTOS gives it to the task immediately. When the task finished using the resource it signals its release by
calling serviceRTX_SI GNAL_SEM

Using aresource semaphore:

A resource semaphore is created by specifying an initial count of -1 in the call of

serviceRTX _CREATE_SEM The RTOS creates a resource semaphore and automatically gives it an
initial value of one indicating that the resource is free. A resource is reserved by calling
serviceRTX_RESERVE_RESusing the semaphore ID which was returned by RTX _CREATE_SEM The
resource is released with a call of serviceRTX RELEASE SEM

Semaphore Services:

RTX CREATE SEM Create a senaphore

RTX DELETE SEM Del ete a semaphore

RTX FREE RES Free a resource semaphore

RTX GET_SEM Get use of a counting semaphore(no wait)
RTX RELEASE SEM Rel ease a resource semaphore

RTX RESERVE RES Reserve a resource semaphore

RTX _SI GNAL_SEM Si gnal a counting semaphore

RTX WAI T _SEM Wait on a counting semaphore (optional timnmeout)

Top of list
Index page

Time / Date Services

The following Time/Data services are available.

RTX GET Tl MEDATE Get systemtinme and date
RTX SET TI MEDATE Set systemtinme and date
RTX GET Tl CKS CGet tick count of system cl ock

Related Topics

TimeDate_Structure type definition

Top of list
Index page

Timer Procedures

The RTOS API provides four calls for the usage of timer procedures. The kernel is able to execute
periodic user timer procedures at a given time interval. Your timer procedure must be as short as
possible without any waiting or endless loops. Avoid the usage of large CLib functions like

printf (). The maximum number of possible timer procedures is 15.

RTX I NSTALL TI MER Install a tinmer procedure

RTX REMOVE TI MER Renove a tinmer procedure fromthe system

RTX START Tl MER Start periodic execution of a installed tiner
pr ocedur e

RTX STOP Tl MER Stop periodic execution of a timer procedure

Top of list
Index page

Event Manager

The internal RTOS Event Manager provides a convenient mechanism for coordinating tasks waiting for
events with tasks and/or timer procedures which can signal the events. The RTOS Event Manager
allows more than one task to simultaneously wait for a particular event. Tasks can also wait for a
particular combination of events or for any one in a set of events to occur. The Event Manager provides
a set of event flags, which can be associated with specific events in your system. These event flags are
provided in groups with 16 event flags per group. The system supports a maximum of two event
groups.

It could be useful to use the Event Manager when two or more tasks will wait for the same event, e.g.
waiting for the start of a motor. An event flag is defined to represent the state of the motor (off or

on). When tasks must wait for the motor, they do so by calling the Event Manager requesting a wait until
the motor control event flag indicates that the motor is on. When the motor control task or timer
procedure detects that the motor is on, it signals the event with a call to the Event Manager. The Event
Manger wakes up all tasks which are waiting for the motor to be on. For further explanations read the
function description in the API call specifications.

Event Services:

RTX CREATE EVENTGROUP Create an event group

RTX DELETE EVENTGROUP Del ete an event group

RTX SI GNAL EVENTS Signal one or nore events in a group

RTX WAI T _EVENTS Wait for all/any of a set of events in a group

RTX GET _EVENTGROUP_STATE Read current state of events in a group

RTX GET EVENT FLAGS Get saved event fl ags

RTX FI ND EVENTGROUP Find the group ID of an group with a specific nane
Top of list
Index page

Message Exchange Manager

The internal RTOS Message Exchange Manager provides a mechanism for interprocess communication
and synchronization. In particular, it offers an instant solution to a common producer/consumer problem:

One or more processes (producers) having to asynchronously deliver requests for service to one
or more servers (consumers) whose identity is unknown to the producer.

An often cited example of using message exchange is a print request queue. Assume that there are two
different server tasks (consumers), each of which is connected to a different printer. There are some
other tasks (producers) which want to asynchronously use one of the two servers for printing and they
don't care which of the two printers is used. The solution is to synchronize those requests: The producer
tasks send their requests (messages) to the Message Exchange Manager. The two server tasks waiting
for messages take a message (if any) from the message queue and execute the requested print job.

The internal Message Exchange Manager uses a message exchange to deliver messages. A message
exchange consists of four mailboxes into which messages can be deposited. The mailboxes are ordered
according to priority (0-3), where mailbox 0 has the highest priority.

Messages are delivered to the mailboxes of the message exchange in message envelopes. The system's
maximum number of available messages envelopes is 64. The maximum number of message
exchanges is ten. The maximum message length is 12 bytes. (Note: Larger messages can be
implemented with a pointer and a length parameter in the message.) Maximum depth of a mailbox is
four. Any task or timer procedure can send a message to a Message Exchange. The sender indicates
the priority of its message (0-3), thereby identifying the mailbox into which it will be delivered.

Any task or timer procedure can request a message from a Message Exchange, but only tasks are
allowed to wait for the arrival of a message, if none is available. A task can specify the priority at which it
is willing to wait and the maximum time. A task which uses a Message Exchange must specify the depth
of its mailboxes in its TaskDef Bl ockstructure. A maximum of four messages can reside in each task

mailbox. Unused mailboxes must have a zero specified in the respective mailbox's mai | box| evel Nfield
in the TaskDef Bl ockstructure. For further explanations read the function description in the API call

specifications.

Message Exchange Services:

RTX CREATE MSG
RTX DELETE MSG
RTX SEND MSG
RTX_GET_MSG
RTX WAI T MSG
RTX _FI ND MSG

Top of list
Index page

Create a nmessage exchange

Del ete a nessage exchange

Send a nessage to a nmessage exchange

Get a nmessage, if any (no wait)

Wait for message to arrive (optional tineout)
Find a nmessage exchange, specified by nane

End of document

BELCK

Beck IPC GabH

RTOS Error Codes - BIOS V1.02 Beta

IPC@Chip Documentation Index

RTOS API Error Codes

All error codes here are stated in decimal.

RTOS error codes returned by RTOS API calls in the DX-Register

0 call successful
-1 RTCS call failed
-2 RTCS APl function nunber (AH input) is not supported

RTOS specific error codes returned by RTOS API calls in the AX register

3 task is still waiting

2 task not waiting; wake is pending

1 no buffer avail abl e

0 no error

1 invalid taskid

2 If DX=-1, no free nessage avail abl e;
I f DX=-2, Bad APl function nunber

-3 no mai |l box defi ned
-4 mai | box ful
-5 wakened before tinmeout
-6 task not waiting (after 2nd wake)
-7 calling task not waiting
-8 i nvalid nessage cal
-12 resource not owned by you (caller)
-13 no such buffer pool (invalid id)
-14 not enough nenory
-15 menory error
-16 menory error
-17 invalid task priority
-18 no free Task Control Bl ock
-19 no free interval tiner
-20 task abort (stop, kill, delete) not allowed
-21 access error

-22 invalid semaphore id

http://www.bcl.de/

-23 semaphore already in use

-24 i nval i d semaphore val ue

-27 ti med out

-28 no nessage avail abl e

-29 calling task still waiting

-30 no buffers defined

-31 menory error

-32 no free event group

-33 event group in use

-37 menory not avail abl e

- 38 invalid menory bl ock

-39 menory bl ock not in use

-40 nmenory bl ock use count overfl ow
-41 no such nmessage exchange (invalid id)
-42 no free nmessage exchange

-43 nmessage exchange in use

-44 invalid nmessage nail box size
-45 no free semaphore

-46 no such event group (invalid id)
-47 no such tiner (invalid id)

-48 invalid timng interva

-49 invalid result status

-50 menory fill exceeds segment limt
-51 semaphore is busy

-52 invalid task trap type

End of document

BELCK

Beck IPC GabH

RTOS Application Developers Note - BIOS V1.02 Beta

IPC@Chip Documentation Index RTOS News

RTOS Application Notes

RTOS API Listing

Developer Notes

The provided services are a subset of the RTOS calls. If it should be necessary, we will add needed
functions in the future. The given examples should be used and modified by the API programmer. The
API programmer should know something about the basics of programming multitasking applications!!

The number of tasks and semaphores in the system is limited. Since BIOS version 1.00 we set fixed
limits for creating tasks, semaphores, eventgroups,

timers and message exchanges with the RTOS API:

20 Tasks

30 Semaphores

5 Timers

2 Eventgroups

10 Message exchanges

It's very important to declare large enough task stack . The example taskexpl shows this problem.

When the program is compiled with Microsoft C V1.52, we must set the stack size of the tasks to 3072
words. The same program compiled with Borland 4.52 requires only a stack size of 512 words. It's not
advised to use the pri nt f functions in a task procedure because it requires a lot of stack space. In the
example program taskexpl.exe, we use pri nt f calls and it works, but there is no guarantee that it will
work in other applications. Timer procedures are executed on the stack of the kernel task, so they
should be as short as possible. Avoid the calling of large C-Library functions like print f .

Task priorities:

We recommend the usage of a task priority between 20 and 30, because a task with a higher priority is
able to block other important tasks of our system. e.g. the serial and Ethernet receiver tasks.

http://www.bcl.de/

End of document

BELCK

Beck IPC GabH

RTOS Examples Available - BIOS V1.02 Beta

IPC@Chip Documentation Index RTOS News

RTOS Examples

Available RTOS API examples:

1. taskexpl.c Creating and starting tasks and usage of a resource semaphore

2. tcpservmec tcpechoserver, which is able to serve a maximum of three clients at the same time
3. tiner.c Timer procedure example for DK40

4. Pastimer.c Timer procedure example written in Turbo Pascal

5. event.c Example of using event groups

6. nmsg. C Example of using message exchange

The examples are compiled with Borland C 4.5 or 5.02.

Also we build a C-Library (rtos.c), which contains the described software interrupt calls.
All example programs built with C API-functions use the files rtos.c, rtos.h and rtxapi.h.

End of document

http://www.bcl.de/

BECK

Beck IPC GmbH

Data Structures used in RTOS API - BIOS V1.02 Beta

IPC@Chip Documentation Index

Data Structures

Here are the data structures used by the RTOS API .
All constants and data structures are defined in the header file rtxapi.h

Notes:

. Byte alignment is required for all data structures used within the API.

Content :

. typedefRTX Msg

. typedefRTX Wait Event

. typedefRTX Wait_Msqg

. typedefTaskDefBlock

. typedefTaskList

. typedefTask_ StateData

. typedefTimeDate Structure
. typedefTimerProc Structure

RTX_Msg

typedef struct tag_rtx_msg{
int msglD, /1 Uni que Message Exchange I D
char nane[4]; // 4 characters, not null term nated

int nbo; /1 Numbers of message envel opes which can reside
int nbil; /1 in each of the four exchange mail boxes,
int nb2; /1 maxi mum 4 envel opes.
int nb3;
} RTX Msg;
Comments

This structure is defined in the header file rtxapi.h.

Prior to making the RTX_CREATE_MSGAPI call, the caller must set the following members of the RTX_Msg structure.

nane

Here you can give the Message Exchange a unique four character name. This field is optional. If you plan to use

the RTX_FI ND_MSGAPIthen you should provide a name here.
nmb0 through nb3

State here the number of message envelopes for each of this Message Exchange's four mailboxes. The system's

maximum number of available messages envelopes is 64 (since BIOS version 1.02B, else 32).

http://www.bcl.de/

The nsgl D member is an output parameter from the RTX_CREATE_MSGAPI call.
Related Topics

API function RTX_CREATE_MSG - Create a Message Exchange
RTOS Message Exchange Manager

Top of list
Index page

RTX_Wait_Event

typedef struct tag_rtx_event_wait
{
unsi gned i nt mask; /1 16-Bit mask identifying the flags of interest of the group.
unsigned int value; // 16 Bit value, which specifies the states of interest
/1 for each flag selected by the mask.

i nt match; /1 event match requirenents, 0:only one flag nmust natch
/1 with value, '=0: all by mask specified flags nust match
| ong timeout; /1 Maximumtime (mlliseconds) for waiting for an event natch

} RTX Wait_Event;
Comments

This structure is defined in the header file rtxapi.h.
Related Topics

API function RTX_WAIT EVENTS - Wait for events in a group
RTOS Event Manager

Top of list
Index page

RTX_Wait_Msg

typedef struct tag rtx wait_nsg{

i nt nsgl D; /1 1D of the message exchange

i nt prio; /] priority for wait (0-3), O=highest

char *nsgQ; /1l Pointer to user buffer to store the arrived nessage
long tineout; /1 Maximumtime (mlliseconds) for waiting for a nessage

} RTX Vit _Msg;

Comments

This structure is defined in the header file rtxapi.h.

Prior to making the RTX_WAI T_MSGAPI call, the caller must set the following members of the RTX Wai t _Msg structure.
nmsgl D

Here you put the message exchange ID acquired by the RTX_ CREATE_MSCGcall.
prio

Specify here the priority of the calling task's access to the messages. To wait in FIFO order, have all

RTX_WAI T_NMBSGAPI callers use the same value here. A task can cut in line ahead of other waiting tasks by setting

this field to a higher priority (lower number) than used by the other tasks.

nmsg
Put a far pointer to a 12 byte buffer allocated in your application program memory. The Message Exchange
Manager will output the message to this buffer if a message is available.

ti meout
Here you can specify the maximum number of milliseconds you are willing to wait for a message. A value of zero
indicates you will wait forever.

Related Topics

API function RTX_WAIT_MSG - Wait for a message from a message exchange
RTOS Message Exchange Manager

Top of list
Index page

TaskDefBlock

typedef struct tag_taskdefbl ock

{

voi d (*proc)(); /1 Task entry vector (far)
char nane[4] ; /1 Task name, 4 characters not null term nated
unsigned int *stackptr; /1l Task stack pointer (far)
unsi gned i nt st acksi ze; /1 size of stack (bytes)
unsi gned short attrib; /1 task attributes (not supported by the RTCS API)
short int priority; [/l task priority, range: 3..127 inclusive
unsi gned short tine_slice; /1 0: none, !=0: nunber of mlliseconds before task
/1 is forced to relinquish processor
short mai | box| evel 1; /1 depth of mailbox i: 0 not used, else 1 - 4 mail box depth
short mei | boxl evel 2; /1 maxi mum nunber of nessages reside inside a task mail box
short mai | boxl evel 3;
short mai | boxl evel 4;

} TaskDef Bl ock;

Comments

This structure is defined in the header file rtxapi.h.

Prior to making the RTX_TASK_CREATE API call, the caller must set the following members of the TaskDef Bl ock
structure.
proc
Here you must set the far vector to your task's entry point. The task's main procedure should be declared
(depending on compiler used) as:
Borland C: voi d huge taskfunc(void)
Microsoft C: void far _saveregs _|oadds taskfunc(void)
to assure that the data segment register (DS) is loaded on entry into your task.
name
Make up a four letter name for your task by which it can be uniquely identified. Avoid names already occupied by
the systemtasks.
stackptr
This far pointer should point to the top of you task's stack space (highest address). Your tasks stack pointer will be
initialized to this value, which points to the first byte of memory following your actual stack space. (Note that x86
CPU decrements the stack pointer prior to writing to the stack.) The stack memory space resides within your
application program.
st acksi ze
Here you specify the size of your task's stack space in bytes. The amount of stack space required for your task
depends on the nature of your task. If large automatic objects are declared in your task's procedures, a large
amount of stack space will be needed. Caution:
Some of the system's interrupts use your task's stack. Consequently we recommend a minimum stack
space of 1024 bytes per task.

Since the problems resulting from stack overflow are often difficult to diagnose and analyze, the following design
steps are recommended:

1. Initially allocate way more stack space then you believe you will need.

2. When you have your task performing what it was designed to do, measure the amount of stack space being
used by your task. The RTX GET TASK STATE API can be used to obtain this measurement.

3. Refine your stack allocation based on this measurement, arriving at a compromise between the conflicting
requirements: efficiency on the one hand (small stack desired) and program maintainability and reliability on
the other hand (big stack desired).

Software maintainability becomes an issue here if you have the stack space wired so tight that the slightest code
change will lead to stack overflow. Reliability is an issue when paths in your task (or interrupts) are executed that
did not execute during your stack space measurement trials.

priority
Application program tasks can range in priority from 3 to 127 (inclusive), where 3 is higher priority. Task priorities
between 20 and 30 are recommended. This recommendation is based on the priority assignments of the
systemtasks. In particular, too high a priority for an application task may block important system tasks: e.g. the
serial and Ethernet receiver tasks. A user application will be started with priority 25.

tinme_slice
Set this value to zero if you do not want round-robin time slicing between this task and others at the same priority
level. If you do want round-robin switching, then specify here the number of milliseconds of CPU time that this task
should receive before the system switches to the next task at this same priority. System timing granularity is one
millisecond.

mai | box! evel N
These four values specify whether or not this task is using mailboxes. See the MessageExchange Manager topic
for more details.

Related Topics

API function RTX TASK CREATE - Create and start a task

Top of list
Index page

TaskList

typedef struct tagtasklist

{

unsi gned int tasklD; /1 Task handl e

char tasknane[5] ; /'l Four character string termnated with zero.
} TaskLi st;
Comments

This structure is defined in the header file rtxapi.h

Related Topics

API function RTX_GET_TASK_LIST - Get list of current tasks in the system

Top of list
Index page

Task_StateData

typedef struct tag task statedata

{

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

i nt
i nt
int
i nt
i nt
int

} Task_St at eDat a;

Comments

t askl D;

taskPri o;
t askSt at €;
t askCount ;
st ackused;
st acksi ze;

/1 Task handl e

/] Task priority
// Bit field,

see bel ow

/'l count of the task nonitor, if task nonitor
/1 Percentage of stack space used
// Task's total

This structure is defined in the header file rtxapi.h.

The t ask St at e bit field is coded as follows:
timer wait (used with other bits)
trigger wait (i.e. idle)
semaphore wait
event group wait
message exchange wait
message send wait
suspended (waiting for resume)
waiting for wakeup

BO:
B1:
B2:
B3:
B4
B5:
B6:
B7:

B8 - B15 internal use only

Related Topics

stack size,

API function RTX GET TASK STATE - Get state of a task

Top of list
Index page

in bytes

is active

TimeDate_Structure

typedef struct tag_tine

{

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
char
char
char
char
char
char

sec;
m n;
hr;
dy;
m;
yr;
dow;
dcen;

} TineDate_ Structure;

Comments

/1
/1
/1
/1
/1
/1
/1
/1

Seconds
M nut es
Hour s
Day
Mont h
Year

(0- 59)
(0- 59)
(0- 23)
(1-31)
(1-12)
(0- 99)

Day of week (Mon=1 to Sun=7)
Century if tine/date is correct

This structure is defined in the header file rtxapi.h.

Related Topics

API function RTX_GET TIMEDATE - Get system time and date
API function RTX_SET_TIMEDATE - Set system time and date

Top of list
Index page

TimerProc_Structure

typedef struct tag_tiner_proc

{
int *tinerlD /1 pointer to storage the unique tinerlD
void (*proc)(); /1 pointer to the procedure to be executed
void *dummyptr; [l -- currently not used --
char nane[4]; /] unique 4 character task nane
long interval; [l timer execution interval in mlliseconds

} TimerProc_Structure;

Comments

This structure is defined in the header file rtxapi.h.

Before calling the RTX | NSTALL TI MER API function the caller must allocate a Ti mer Pr oc_St r uct ur e with the following
members preset as specified here:

timerl D
Put here a far pointer to a 16 bit location in your program's memory space. The RTX_| NSTALL_TI MERAPI function
will output a Timer ID to this referenced location. This Timer ID value is used as handle for this new timer procedure
within the other Timer Procedure API functions.

proc
This is a far vector to your timer procedure. This routine will be called periodically from the kernel. Your timer
procedure should be declared (depending on compiler used) as:
Borland C: voi d huge MyTi mer Proc(voi d)
Microsoft C: voi d far _saveregs _| oadds MyTi ner Proc(void)
Turbo Pascal:
procedure Timerl Proc;interrupt;
begi n
[... your code ...]
(**)
(* This is needed at the end of the Tiner Proc. *)
asm
POP BP
POP ES
POP DS
POP DI
POP Si
POP DX
POP CX
POP BX
POP AX
RETF
end;
(**)
end;
so that the compiler will generate code to set the CPU's DS register, enabling access to your program's data.
name

Place here a four letter name for your timer procedure to uniquely identified it. (This string is not zero terminated.)

i nterval
Specify here the interval, in milliseconds, at which you want your timer procedure to be called.

Related Topics

API function RTX_INSTALL TIMER - Install a timer procedure
RTOS Timer Procedures

Top of list
Index page

End of document

BELCK

Beck IPC GabH

RTOS Tasks - BIOS V1.02 Beta

IPC@Chip Documentation Index RTOS API News

IPC@Chip System Tasks

The RTOS itself creates a set of tasks used to support the IPC@Chip services. Your application programs will
be executing concurrently with these built-in tasks. The fact that these RTOS tasks exists is particularly relevant
when you choose priorities for your own application program's tasks.

Each task in the IPC@Chip system must have a unique four letter task name. Consequently the user must take
care to avoid the names used by these system tasks when naming tasks.

System Task List

The priorities stated here are in decimal, where 0 is highest priority. Some tasks may not be present in your
system due to your system configuration specified in the chi p. i ni configuration file. For these tasks the
relevant configuration file parameter is stated here with a hyper-link.

AMXK priority= 0 Ker nel task

TCPT priority= 4 TCP/ 1P tinmer task

ETHO priority=5 Et hernet receiver task

PPPS priority= 6 PPP server (PPPSERVER ENABLE)
PPPC priority= 6 PPP client task

CFGS priority=7 UDP config server

TELN priority= 11 Tel net server (TELNET ENABLE)
MT SK priority= 12 Consol e task (command shel l)
V\EBS priority= 41 Web server (VEEB ENABLE)

FTPS priority= 41 FTP server (FTP ENABLE)

Related Topics

API function RTX TASK CREATE - Create and start a task

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

Hardware API - BIOS V1.02 Beta

IPC@Chip Documentation Index Hardware APl News

Hardware API

Here are the interface definitions for access to the IPC@Chip's hardware.

Topics

Hardware API LayerModel
Hardware APl News

API Functions

The hardware API uses interrupts 0xA2 (PFE functions) and OxAl (HAL functions) with a service number in the
high order byte of the AX register (AH). The implemented hardware services are listed below.

. Interrupt OxA2 function 0x80: PFE: Enable Data Bus

. Interrupt OxA2 function 0x81: PFE: Enable Non-Multiplexed Address Bus
. Interrupt OxA2 function 0x82: PFE: Enable Programmable I/O Pins

. Interrupt OxA2 function 0x83: PFE: Enable Programmable Chip Selects

. Interrupt OxA2 function 0x84:. PFE: Enable External Interrupt Requests

. Interrupt OxA2 function 0x85: PFE: Enable External Timer Inputs/Outputs
. Interrupt OxA2 function 0x86:. PFE: Set Edge/Level Interrupt Mode

. Interrupt OxA2 function 0x87:. PFE: Enable PWD Mode

. Interrupt OxA2 function 0x88: PFE: Enable External DMA

. Interrupt OxA2 function 0x89: PFE: Enable INTO/INTA cascade mode

. Interrupt OxA1l function 0x10: HAL: Set int0 Vector

. Interrupt OxA1l function 0x80: HAL: Read Data Bus

. Interrupt OxA1l function 0x81: HAL: Write Data Bus

. Interrupt OxA1l function 0x82: HAL: Read Programmable I/O Pins

. Interrupt OxA1l function 0x83: HAL: Write Programmable I/O Pins

. Interrupt OxA1l function 0x84: HAL: Install Interrupt Service Routine

. Interrupt OxA1l function 0x85: HAL: Initialize Timer Settings

. Interrupt OxA1l function 0x86: HAL: Start Timer

http://www.bcl.de/

. Interrupt OxA1l function 0x87: HAL: Stop timer
. Interrupt OxA1l function 0x88: HAL: Read Timer Count
Interrupt OxAl function 0x89: HAL: Write Timer Count
Interrupt OxAl function Ox8A: HAL: Get Frequencies
. Interrupt OxA1l function 0x8B: HAL: Set Timer Duty Cycle Waveform
. Interrupt OxA1 function 0x8C: HAL: Read Specific I/0O Pin
. Interrupt OxA1l function 0x8D: HAL: Write to Specific 1/0 Pin
Interrupt OxAl function Ox8E: HAL: Give EOI
. Interrupt OxA1l function 0x90: HAL: Get/Set Watchdog Mode
. Interrupt OxA1l function 0x91: HAL: Refresh Watchdog
. Interrupt OxA1l function OxAO: HAL: Block Read Data Bus
. Interrupt OxA1 function OxAl: HAL: Block Write Data Bus
Interrupt OxAl function O0xBO: HAL: Start DMA Mode
. Interrupt OxA1l function 0xB1l: HAL: Stop DMA Transfer
. Interrupt OxA1l function 0xB2: HAL: Get DMA Info
. Interrupt OxA1l function OxCO0: HAL: Initialize/Restore Non-Volatile Data
. Interrupt OxA1l function 0xCl: HAL: Save Non-Volatile Data
Interrupt OxAl function OxC2: HAL: Get Reboot Reason

Interrupt OXA2 service 0x80: PFE: Enable Data Bus

Initialize data bus I/O mask and ALE usage. The I/O mask defines which data bits on the bus are inputs
and which are outputs. The DX mask bit for bi-directional data bus lines (read/write) should be set to '1'.

Parameters

AH
Must be 0x80.

AL
O: Disable ALE, 1: Enable ALE

DX
Mask
Bit 0 = 0: Data bus bit 0 is input, 1: is output
Bit 1 = 0: Data bus bit 1 is input, 1: is output

Bit 7 = 0: Data bus bit 7 is input, 1: is output
Bit 8..15 not used (for future extensions)

Return Value
none

Comments

used pins:
ALE, ADJ[0..7], RD#, WR#
excluded pins:
if ALE is used, then PCSO0# is not available.

Top of list
Index page

Interrupt OXA2 service 0x81: PFE: Enable Non-Multiplexed Address Bus

The IPC@Chip has three non-multiplexed address bit outputs, AO through A2. The enabling of these
pins is done here.

Parameters

AH
Must be 0x81.

DX
Mask
Bit 0 = 1 Enable A0
Bit 1 = 1 Enable Al
Bit 2 = 1 Enable A2
Bit 3..15 not used

Return Value
none
Comments

used pins:
AJ0..2], AD[0..7], RD#, WR#
excluded pins:
If AO is enabled then PCS1#, TMRINO, P1O4 are not available
If Al is enabled then PCS[5..6]#, TMRIN1, TMROUT1, PIO3 are not available
If A2 is enabled then PCS[5..6]#, PIO2 are not available.

Top of list
Index page

Interrupt OXA2 service 0x82: PFE: Enable Programmable 1/0O Pins

Enable used programmable 1/O pins. Define which pins are inputs and which are outputs. This function
can be called several times for definition of different P1O pins. With repeated selection of the same pin,
the definition made last is valid. The selection of a PIO pin can be cancelled by calling the appropriate
PFE function that causes the respective PIO pin to be used for another purpose (e.g. function 0x83 for

PIO[2..6] pins).
Parameters

AH
Must be 0x82.

AL
Mode
0 = Only read PIO state
1 = Input without pullup/pulldown
2 = Input with pullup (not P1013)
3 = Input with pulldown (only for PIO3 and PIO13)
4 = Qutput init value = High
5 = Qutput init value = Low

DX
PI1O pin
Bit 0 = 1 Enable PIOO
Bit 1 = 1 Enable PIO1

Bit 13 = 1 Enable PIO13
Bit 14..15 not used (for future extensions)

Return Value

AX =wPIO
Bit 0 = 1: PIOO0 is PIO
Bit 1 =1: PIO1is PIO

Bit 13 = 1: PIO13is PIO

Bit 14..15 not used (for future extensions)
DX = wINPUTS (all pins, including non-P1O pins)

Bit 0 = 1: PIOO is input

Bit 1 = 1: PIO1 is input

Bit 13 = 1: PIO13 is input

Bit 14..15 not used (for future extensions)
CX =wOUTPUTS (all pins, including non-PIO pins)

Bit 0 = 1: PIOO0 is output

Bit 1 = 1: PIO1 is output

Bit 13 = 0: PIO13 is output
Bit 14..15 not used (for future extensions)
AX = DX = CX =0, Error: Wrong arguments

Comments

used pins:

P10J0..13]
excluded pins:
All other functionality on the selected PIO pin.

Related Topics

Read Specific 1/0 Pin

Write to Specific I/0 Pin
Read Programmable 1/0 Pins
Write Programmable 1/0O Pins
Initialize the 12C Bus

Top of list
Index page

Interrupt OXA2 service 0x83: PFE: Enable Programmable Chip Selects

Enable chip selects PCS|0..3]#, PCS[5..6]#.
Parameters

AH
Must be 0x83.

DX
Mask

Bit 0 = 1 Enable PCSO0#, active when I/O address between 000h..0FFh
Bit 1 = 1 Enable PCS1#, active when I/O address between 100h..1FFh
Bit 2 = 1 Enable PCS2#, active when I/O address between 200h..2FFh
Bit 3 = 1 Enable PCS3#, active when I/O address between 300h..3FFh
Bit 4 = don't care

Bit 5 = 1 Enable PCS5#, active when I/O address between 500h..5FFh
Bit 6 = 1 Enable PCS6#, active when 1/O address between 600h..6FFh
Bit 7..15 = don't care

Return Value
none
Comments

used pins:
PCSJO0..3J#, PCS[5..6]#
excluded pins:
if PCSO#: ALE (multiplexed address / data bus)
if PCS1#: A0, P104, TMRINO, SPI
if PCS2#: P106, INT2, INTA#, PWD, SPI, hw flow control serial port 1,
cascaded interrupt controller
if PCS3#: P1O5, INT4, SPI, hw flow control serial port 1

if PCS5#: A[1..2], PIO3, TMROUT1, TMRIN1
if PCS6#: A[L..2], PIO2

Top of list
Index page

Interrupt OXA2 service 0x84: PFE: Enable External Interrupt Requests

Enable external interrupt requests INT[O], INT[2..6].

Parameters

AH
Must be 0x84.

DX
Mask

Bit 0 = 1 Enable INTO
Bit 1 = don't care

Bit 2 =1 Enable INT2
Bit 3 =1 Enable INT3
Bit 4 = 1 Enable INT4
Bit 5 =1 Enable INT5
Bit 6 = 1 Enable INT6
Bit 7..15 = don't care

Return Value

none

Comments

used pins:
INTO, INT[2..6]
excluded pins:
if INTO: PIO13, TMROUTO, cascaded interrupt controller
if INT2: PIO6, PCS2#, INTA#, PWD, SPI, hw flow control serial port 1
if INT3: PIO12, serial port 1
if INT4: PIO5, PCS3#, SPI, hw flow control serial port 1
if INT5: PIO1, DRQO, default 12C-Bus pins, SPI
if INT6: PIOO, DRQ1, default I2C-Bus pins, SPI

Related Topics

Set Edge/Level Interrupt Mode

Top of list
Index page

Interrupt OXA2 service 0x85: PFE: Enable External Timer Inputs/Outputs

Enable external timer inputs (TMRI NO, TIMRI N1) or timer outputs (TMROUTO, TMROUT1). If on a given
timer the external input is selected, then that timer's external output is not available and vice-versa.

Parameters

AH
Must be 0x85.

DX
Mode
Bit 0..1 = 10 Enable TWRI NO
= 11 Enabl e TMROUTO
Bit 2..3 = 10 Enable TMRI N1

11 Enabl e TMROUT1
Bit 4..15 = don't care

Return Value
none
Comments

used pins:
TMRINJO..1], TMROUT]JO..1]
excluded pins:
if TMRINO: AO, PCS1#, PI04, TMROUTO
if TMRIN1: A[1..2], PCS5#, TMROUT1
if TMROUTO: PIO13, INTO, cascaded interrupt controller, TMRINO
if TMROUT1: A[l..2], PCS5#, TMRIN1, PIO3

Related Topics

HAL Initialize Timer Settings

Top of list
Index page

Interrupt OXA2 service 0x86: PFE: Set Edge/Level Interrupt Mode
Set edgel/level interrupt mode for INTO, INT2, INT3, INT4.
Parameters

AH

Must be 0x86.

AL
1 = active high, level-sensitive interrupt
0 = low-to-high, edge-triggered interrupt
DX
Mask, bits set to designate interrupts affected:
Bit 0 = INTO
Bit 1 = don't care
Bit 2 = INT2
Bit 3 =INT3
Bit 4 = INT4

Bit 5..15 = don't care
Return Value
none
Comments

Default for all interrupts is edge-triggered mode. In each case (edge or level) the interrupt pins must
remain high until they are acknowledged.

Mode for INT5/INT6 is not supported.

Related Topics

Enable External Interrupt Requests

Top of list
Index page

Interrupt OXA2 service 0x87: PFE: Enable PWD Mode
Enable Pulse Width Demodulation (PWD)
Parameters

AH
Must be 0x87.

Return Value
none

Comments

In PWD mode, TMRINO, TMRINZ1, INT2 and INT4 are configured internal to the
chip to support the detection of rising (INT2) and falling (INT4) edges on the PWD
input pin and to enable either timer0 when the signal is high or timerl when

the signal is low. The INT4, TMRINO and TMRINL1 pins are not used in PWD mode
and so are available for use as PIO's.

The ISR for the INT2 and the INT4 interrupts should examine the current count of
the associated timer, timerl for INT2 and timerO for INT4, in order to determinate
the pulse width. The ISR should then reset the timer count in preparation for the
next pulse.

Overflow conditions, where the pulse width is greater than the maximum count of the
timer, can be detected by monitoring the MaxCount bit in the associated timer or by
setting the timer to generated interrupt requests.

used pins:
PWD

excluded pins:
TMRINO, TMRIN1, TMROUTO, TMROUTL, INT4, INT2
PCS2#, INTA#, P1O6, hw flow control serial port 1

Top of list
Index page

Interrupt OXA2 service 0x88: PFE: Enable External DMA

Enables DRQ pin to start DMA transfer

Parameters

AH
Must be 0x88.

AL
DRQ channel:
0 =DRQO
1 =DRQ1

Return Value

AX =0 no error
AX = -1 invalid DRQ channel
AX = -2 DMA channel is used for serial interface

Comments

For using external DMA you have to disable the serial DMA mode. Do this with an CHIP.INI entry . COM
uses DRQ1, EXT uses DRQO.

used pins:
DRQI0..1]
excluded pins:
if DRQO: P101, INT5, default I2C-Bus pins, SPI

if DRQ1: PIOO, INT6, default I2C-Bus pins, SPI

Top of list
Index page

Interrupt OXA2 service 0x89: PFE: Enable INTO/INTA cascade mode
Enable INTO/INTA cascade mode
Parameters

AH
Must be 0x89.

Return Value
none
Comments

To install a service interrupt routine in cascade mode, the

HAL func. "Install Interrupt Service Routine" can not be used, because

the cascaded interrupt controller supply the interrupt type over the bus.
Install a normal interrupt routine with setvect for the vector you use

and at the end of this function give an EOI to the cascaded controller and to
the internal interrupt controller (INTO).

used pins:
INTO, INTA#
excluded pins:
PIO13, TMROUTO, INTO in normal mode, P10O6, PCS2#, PWD, SPI, hw flow control serial port 1

Top of list
Index page

Interrupt OXxA1 service 0x10: HAL: Set intO Vector
Define the interrupt handler for the hardware interrupt 0
Parameters

AH
Must be 0x10

ES:DX
Pointer to your interrupt handler

Return Value
none
Comments

The interrupt handler should be defined as
void interrupt ny_handl er(voi d)
Interrupts are enabled upon entry into your routine.
There is no need to signal any end of interrupt. This is handled by the system when your handler
performs it's return.
The stack size must be at least 400 bytes.
Do not use any floating point arithmetic in your interrupt service routine.

Developer Notes

This function is only for compatibility to older version of the hardware API.
Please use interrupt 0xA2 function 0x84 and interrupt 0xA1 function 0x84 instead.

Top of list
Index page

Interrupt OXA1 service 0x80: HAL: Read Data Bus

Read from specified address. The result is combined with wAND and wXOR parameters. To read the
data bus without change, set WAND=0xFFFF and wXOR=0x0000.

Parameters

AH
Must be 0x80.

DI

Address
BX

wAND
CX

wXOR

Return Value

8 Bit data in ax, ax = (databus & WAND) * wXOR

Comments

& = bit wise AND
N = bit wise XOR

Related Topics

Block Read Data Bus
Write Data Bus

Top of list
Index page

Interrupt OXA1 service 0x81: HAL: Write Data Bus

Write to specified address. The provided parameters are combined as follows to form the output byte
value:
out put value = (data & WAND) ~ wXOR

To write the value in DL to the address without modification, set WAND=0xFFFF and wXOR=0x0000.

Parameters

AH
Must be 0x81.

DI

Address
DL

8 bit data
BX

wAND
CX

wXOR

Return Value
none
Comments

& = bhit wise AND
N = bit wise XOR

Related Topics

Block Write Data Bus
Read Data Bus

Top of list
Index page

Interrupt OXA1 service 0x82: HAL: Read Programmable 1/O Pins

Read the programmable I/O pins. The result is combined with the wAND and wXOR parameters. To
read the PIO pins without modification, set WAND=0xFFFF and wXOR=0x0000. To read only the input
pins, set WAND = wPIO & wINPUTS. The wPIO and wINPUTS values are return values from PFE

function Ox82.

Parameters

AH
Must be 0x82.

BX
WAND

CX
wXOR

Return Value
ax = (P10[0..13] & wAND) * wXOR.
Comments

& = bhit wise AND
N = bit wise XOR

Related Topics
Read Specific 1/0 Pin

Write Programmable 1/0O Pins
PFE: Enable Programmable 1/0 Pins

Top of list
Index page

Interrupt OXA1 service 0x83: HAL: Write Programmable 1/0O Pins

Write to the programmable 1/0O pins. Before the value is written, the value is combined with the wAND
and wXOR parameters as:

PIJ0..13] = (data & WAND) wXOR
To write value in DX to the programmable I/O pins without change, set WAND=0xFFFF and
wXOR=0x0000.
Only PIO pins that are defined as outputs can be written.

Parameters

AH
Must be 0x83.

DX
data applied to P10OJ[0..13]
where DX bit 0 maps to P1O[0]
and DX bit 13 maps to PIO[13]
BX
wAND
CX
WXOR

Return Value
none
Comments

& = bhit wise AND
N = bit wise XOR

Related Topics
Write Specific I/O Pin

Read Programmable I/O Pins
PFE: Enable Programmable 1/0 Pins

Top of list
Index page

Interrupt OXA1l service 0x84: HAL: Install Interrupt Service Routine

Install user interrupt service routine to be invoked by system interrupt handler.

Parameters

AH
Must be 0x84.

DX
HAL interrupt number from following list:
0 = INTO (external)
1 = Network controller (internal) (*)
2 = INT2 (external)
3 = INT3 (external)
4 = INT4 (external)
5 = INT5 (external) / Terminal Count DMA Channel O (if DMA is used)
6 = INT6 (external) / Terminal Count DMA Channel 1 (if DMA is used)
7 = reserved
8 = TimerO (internal)
9 = Timer1 (internal)
10 = Timer 1ms (internal) (*)
11 = Serial port O (internal) (*)
12 = Serial port 1 (internal) (*)
13 = reserved
14 = reserved
15 = NMI (internal/external)
(* = currently not supported)

CX
Number of interrupts generated before new user interrupt service routine is called.
CX = 0 disables the user ISR (same as a NULL in ES:BX).

ES:BX
far pointer to user interrupt service routine
if pointer is NULL user ISR is disabled

Return Value

Far pointer to old handler in ES:BX

Comments

The user-defined ISR is called from a system ISR with the interrupt identifier number in the BX CPU
register, thus allowing for a single user ISR to handle multiple interrupt sources. The user ISR must be
terminated with an IRET instruction and may not change any CPU registers except for AX and BX.

Any required EOI signal is issued by the system ISR that called your user ISR.

Top of list
Index page

Interrupt OXA1 service 0x85: HAL: Initialize Timer Settings

Initialize the timer settings of timer0 or timerl.

Parameters

AH

AL

DX

CX

Must be 0x85.

Timer
O0=Timer0 / 1=Timerl

Mode
Bit 0: O=run single time / 1=run continuous
Bit 1. O=disable timer interrupt / 1=enable timer interrupt
Bit 2: O=use internal clock / 1=use TMRIN pin as external clock
Bit 3..15: not used

Clock divider (maximum count value)

Return Value

none

Comments

The clock divider value serves as a comparator for the associated timer count. The timer countis a 16
bit value that is incremented by the processor internal clock (see HAL function Ox8A) or can also be
configured to increment based on the TMRINO or TMRIN1 external signals (see PFE function 0x85).

The TMROUTO und TMROUT1 signals can be used to generate waveforms of various duty cycles. The
default is a 50% duty cycle waveform (Change waveform with HAL function 0x8B).

Note that TMRIN pin and TMROUT pin can not be used at the same time.

If the clock divider value is set to 0000h, the timer will count from 0000h to FFFFh (maximum divider).
When the timer reaches the clock divider value, it resets to 0 during the same clock cycle. The timer
count never dwells equals to the clock divider value (except for special case when divider value is set to
0000h).

When the timer is configured to run in single time mode, the timer clears the count and then halts on
reaching the maximum count (clock divider value).

If the timer interrupt is enabled, the interrupt request is generated when the count equals the clock divider
value. Use HAL function 0x84 to install your interrupt service routine.

Related Topics

HAL Start Timer function
Read Timer Count
Write Timer Count

Developer Notes

The timer output frequency is dependent on the internal processor clock.
For compatibility with future versions of @Chip, please use the HAL function Ox8A, "Get frequencies”, to

compute the correct clock divider value.

Available examples
1. Timerln example, timerin.c
2. TimerOut example, timerout.c

Top of list
Index page

Interrupt OXA1 service 0x86: HAL: Start Timer
Enable the specified timer to count.
Parameters

AH
Must be 0x86.

AL
Timer
0=Timer0 / 1=Timerl

Return Value
none
Related Topics

HAL Initialize Timer Settings
Stop Timer function

Top of list
Index page

Interrupt OXA1 service 0x87: HAL: Stop timer

Stop the specified timer's counting

Parameters

AH
Must be 0x87.

AL
Timer
0=Timer0 / 1=Timerl

Return Value

none
Comments

The specified timer is disabled.
Related Topics

Start Timer function

Top of list
Index page

Interrupt OXA1 service 0x88: HAL: Read Timer Count
Read the timer count.
Parameters

AH
Must be 0x88.

AL
Timer
O0=Timer0 / 1=Timerl

Return Value

AX = Counter reading
DX = 1=MaxCount reached / 0=MaxCount not reached

Comments

AX contains the current count of the associated timer. The count is incremented by the processor
internal clock (see HAL function Ox8A), unless the timer is configured for external clocking (then it is

clocked by the TMRINO and TMRINL1 signals).

Related Topics

HAL Initialize Timer Settings
Stop Timer function
Write Timer Count

Top of list
Index page

Interrupt OXA1 service 0x89: HAL: Write Timer Count
Preset the specified timer's count register to provided value.
Parameters

AH
Must be 0x89.

AL
Timer
O0=Timer0 / 1=Timerl

DX
Value to write to 16 bit counter

Return Value

none
Comments

The timer count can be written at any time, regardless of whether the corresponding timer is running.
Related Topics

HAL Initialize Timer Settings

Stop Timer function
Read Timer Count

Top of list
Index page

Interrupt OXA1 service Ox8A: HAL: Get Frequencies

Get the system frequencies.

Parameters

AH
Must be Ox8A.

AL
Which frequency to get:
0 = Return processor frequency
1 = Return timer base frequency
2 = Return maximum baud rate
3 = Return PWD timer frequency

Return Value
DX:AX frequency [Hz]

Comments

Use the timer base frequency to compute the correct timer clock divider value, where:
Qut put frequency = tinmer base frequency / clock divider

Use the maximum baud rate compute the correct baud rate for the processor specific baud rate initialize
function (See Fossil Extended line control initialization function).

Baud rate = maximum baud rate / baud rate divider

Related Topics

HAL Initialize Timer Settings

Top of list
Index page

Interrupt OXA1 service 0x8B: HAL: Set Timer Duty Cycle Waveform

Set the duty cycle waveform of specified timer.

Parameters

AH
Must be 0x8B.

AL
Which Timer
O=Timer0 / 1=Timer 1

DX
Mode
O=disable duty cycle / 1=enable duty cycle

CX
Alternate clock divider (if DX = 1)

Return Value

none

Comments

Use this function to modify the timer waveform behavior. For example a 50% duty cycle waveform can
be generated by specifying here an alternate clock divider value in CX that is the same value as was
used for the main clock divider value set in the Timer Initialization function call.

Please note that the timer frequency will change if you use this function. If you disable the duty cycle,
the timer output will no longer generate a rectangle signal. When duty cycle mode is disabled, the
TMROUT pin switches low for only one clock cycle after the maximum count is reached.

Related Topics

HAL Initialize Timer Settings

Top of list
Index page

Interrupt OXA1l service Ox8C: HAL: Read Specific 1/0O Pin
Read specified programmable I/O pin.
Parameters

AH
Must be 0x8C.

AL
SC12 PIO No. [0..13]

Return Value

AX=0 PIO pin is low, AX!=0 PIO pin is high
Related Topics

Write to Specific I/O Pin

Read Programmable I/O Pins
PFE: Enable Programmable I/O Pins

Top of list
Index page

Interrupt OXA1 service 0x8D: HAL: Write to Specific I/0 Pin

Write to a specified programmable 1/0O pin. Only PIO pins that are defined as outputs can be written.

Parameters

AH
Must be 0x8D.

AL
SC12 PIO No. [0..13]

DX
DX =0 ==> set PIO to low
DX non-zero ==> set PIO to high

Return Value
none
Related Topics
Read Specific I/O Pin

Write Programmable 1/0 Pins
PFE: Enable Programmable 1/0 Pins

Top of list
Index page

Interrupt OXA1 service Ox8E: HAL: Give EOI
Give End-Of-Interrupt for INTO-INT4
Parameters

AH
Must be Ox8E.

AL
Type (0=INTO ... 4=INT4)

Return Value

none

Comments

When installing a interrupt service routine through HW API, it's not
neccessay to call this function, because the HW API does it for you.

This function is provided for writing own interrupt service routines without

the HAL func. Install Interrupt Service Routine .

Especially when using cascaded mode of the interrupt controller with INTO/INTA,

this function is needed for generating an EOI for INTO.

Related Topics

Enable INTO/INTA cascade mode

Top of list
Index page

Interrupt OXA1 service 0x90: HAL: Get/Set Watchdog Mode
Get or set the watchdog mode.
Parameters

AH
Must be 0x90.

AL
Mode
0 = only get mode
2 = Watchdog will be triggered by user program
3 = Watchdog will be triggered by BIOS (default)

Return Value
AX=mode
Comments

The watchdog timeout period is 800 ms.

If you select the User Program mode, you must call the HAL Refresh Watchdog function 0x91 at least

every 800 ms to prevent the watchdog from resetting the system.

In BIOS mode, the BIOS performs the

watchdog strobing provided that the system's timer interrupt is allowed to execute. Beware that

excessive interrupt masking periods can lead to system resets.

Related Topics

Refresh Watchdog Function

Top of list
Index page

Interrupt OXA1 service 0x91: HAL: Refresh Watchdog
Strobe the hardware watchdog to reset its 800 ms timeout period.
Parameters

AH
Must be 0x91.

Return Value
none
Comments

If the watchdog is in User Program mode, this function must be called at least every 800 ms to prevent a
CPU reset due to watchdog timeout.

Related Topics

Get/Set Watchdog Mode

Top of list
Index page

Interrupt OXA1l service OxAO: HAL: Block Read Data Bus

Read block of bytes from data bus into provided buffer.
Parameters

AH
Must be 0xAO.

DI
First address

Sl
Second address

ES:BX
Pointer to buffer

CX
Number of bytes to read into buffer

Return Value
none
Comments

IF Sl I= DI, this function will alternate reads between the two addresses until CX bytes are read, starting
at first address. Set Sl == DI if you want to read from only a single address.

Related Topics

Block Write Data Bus
Read Data Bus

Top of list
Index page

Interrupt OXA1 service OxAl: HAL: Block Write Data Bus
Output byte stream from buffer to specified address or addresses.
Parameters

AH
Must be OxA1l.

DI

First address
SI

Second address
ES:BX

Pointer to buffer
CX

Number of bytes in buffer to output

Return Value

none
Comments

IF Sl I= DI, this function will alternate between writes to first and second address. Set Sl == DI if you
want all data written to a single address.

Related Topics

Block Read Data Bus
Write Data Bus

Top of list
Index page

Interrupt OXA1 service 0xBO: HAL: Start DMA Mode

Starts the DMA mode. After calling this function, the DMA transfer will be started once the external DRQ
pins will be activated.

Parameters

AH
Must be 0xBO

AL

DMA channel:

0 =DRQO

1 =DRQ1
CX

Number of bytes which has to be tranfered
DX

Control Register:
Bit O: 1=Periority for the channel / O=Priority for the other channel
Bit 1: 1=Source synchronized / 0=No source synchronization
Bit 2: 1=Destination synchronized / 0=No destination synchronization
Bit 3: 1=Use interrupt at end of transfer / 0=do not use an interrupt
Bit 4: must be setto ‘1’
Bit 5: 1=Source address increment / 0=No increment of source address
Bit 6: 1=Source address decrement / 0=No decrement of source Address
Bit 7: 1=Source is in memory space / 0=Source is in 10 space
Bit 8: 1=Destination address increment / 0=No increment of destination address
Bit 9: 1=Destination address decrement / 0=No decrement of destination address
Bit 10: 1=Destination is in memory space / O=Destination is in 10 space
Bit 11: must be set to ‘0’

Bitl and Bit2 can't be set at the same time.

BX:SI
Pointer to unsigned long (20-Bit physical) source address

ES:DI
Pointer to unsigned long (20-Bit physical) destintation address

Return Value

Success: AX=0
AX = -1 Invalid DMA channel
AX = -2 DMA channel used for serial interface

Comments

This function starts a DMA transfer. After calling this function the DMA controller is ready for transfer.
Once the DRQ pin will be activated the DMA transfer will be started. The number of bytes which will be
transfered has to be put in the CX register. Before calling the function you have to enable the DRQ pin for
this channel (and with that the serial DMA mode must be disabled in the CHIP.INI).

Related Topics

Enable external DRQ Pin

Top of list
Index page

Interrupt OXA1 service 0xB1: HAL: Stop DMA Transfer

Disables the DMA controller. A running DMA transfer would be halted.
Parameters

AH
Must be 0xB1

AL
DMA channel:
0 =DRQO
1 =DRQ1

Return Value

Success: AX=0
AX = -1 Invalid DMA channel
AX = -2 DMA channel used for serial interface

Comments

Stops a DMA transfer (disables the DMA controller). The transfer could be continued by calling Continue
DMA transfer

Related Topics

Start DMA Transfer

Top of list
Index page

Interrupt OXA1 service 0xB2: HAL: Get DMA Info
Get the state of the DMA channel
Parameters

AH
Must be 0xB2

AL
DMA channel:
0 =DRQO
1 =DRQ1

Return Value

AX = 0 DMA channel disabled
AX =1 DMA channel (user mode) enabled for transfer
AX = -1 Invalid DMA channel
AX = -2 DMA channel used for serial interface
CX = DMA counter (bytes which have to be transfered)
DX = Control Register: Bit 0: 1=Priority for the channel / 0O=Priority for the other channel
Bit 1: 1=Source synchronized / 0=No source synchronization
Bit 2: 1=Destination synchronized / 0=No destination synchronization
Bit 3: 1=Use interrupt at end of transfer / 0=do not use an interrupt
Bit 4: must be set to '1’
Bit 5: 1=Source address increment / 0=No increment of source address
Bit 6: 1=Source address decrement / 0=No decrement of source Address
Bit 7: 1=Source is in memory space / 0=Source is in 10 space
Bit 8: 1=Destination address increment / 0=No increment of destination address
Bit 9: 1=Destination address decrement / 0=No decrement of destination address
Bit 10: 1=Destination is in memory space / O=Destination is in 10 space

BX:SI = Pointer to unsigned long (20-Bit physical) source address
ES:DI = Pointer to unsigned long (20-Bit physical) destintation address

Comments

This function returns the status of the DMA channel in AX.

Top of list
Index page

Interrupt OXA1 service 0xCO: HAL: Initialize/Restore Non-Volatile Data

Initialize/Restore non-volatile data. Tell the BIOS where your variables are located, which should be
saved and reload their saved values, if available.
The non-volatile (remanent) data is stored in A: \ r ena. bi n file.

Parameters

AH
Must be 0xCO

ES:BX
Pointer to a _REMOP structure:

struct _REMOP

{
unsigned entries; // nunber of entries in struct REMOP_ENTRY X[]

unsi gned segnent; // common segnent address

struct REMOP_ENTRY

{
unsi gned of fs; /1l offset address
unsi gned si ze; /1 number of bytes (nust be <= nmaxsi ze)
unsi gned maxsi ze; [l maxi mal nunber of bytes

unsi gned el ensi ze; // nunber of bytes per data el enent
unsi gned di stance; // distance to next data el enent (nust be >=
el ensi ze)
} X[MAX_RETENTI VE_AREAS] ;
b
Return Value

Success: AX =0
Failure: AX < 0, Could not create file

Comments

Call this function at the beginning of your program.

The _REMOP structure reference by ES:BX must be static. (This function does not make a copy of the
structure's content.)

Related Topics

Save Non-Volatile Data

Top of list
Index page

Interrupt OXA1 service 0xC1l: HAL: Save Non-Volatile Data

This function save your non-volatile data listed in the _ REMOP structure registered with HAL function
0xCO. The data is stored in A: \ r erra. bi n file.

Parameters

AH
Must be 0xC1

Return Value
none
Comments

Call this function on exit from your program and in your NMI (Non-Maskable Interrupt) handler. Your
hardware around the IPC@Chip must support the Pfail signal, so that the IPC@Chip can generate an
NMI sufficiently in advance of power loss to the CPU.

Reminder : The DK40 does not support the Pfail signal.

Related Topics

Initialize/Restore Non-Volatile Data

Top of list
Index page

Interrupt OXA1l service 0xC2: HAL: Get Reboot Reason
Check cause of most recent reboot.
Parameters

AH
Must be 0xC2

Return Value

AX = reason:

0 = UNKNOWN
3 = WATCHDOG
4 = POWER FAIL

Comments

This function only returns valid results if the init/restore function (OxCO0) was called following the reboot.

Related Topics

Initialize/Restore Non-Volatile Data

Top of list
Index page

End of document

BELCK

Beck IPC GabH

Hardware APl Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

Hardware APl Updates

The following extensions to the hardware API are available in the indicated BIOS revisions.

New in version 1.02B: New PFE function to enable INTO/INTA cascade mode
New in version 1.02B: New HAL function to give EOI (for cascade mode)
New in version 1.02B: New PFE function to enable DRQ pins

New in version 1.02B: New HAL functions for external DMA transfers

New in version 1.00:
New in version 0.70:
New in version 0.70:
New in version 0.70:
New in version 0.70:
New in version 0.68:
New in version 0.68:
New in version 0.67:
New in version 0.65:
New in version 0.65:

Changed data bus read/write functions, A1/A2 is not switched anymore
New PFE function for PWD mode

New HAL read/write functions for specific programmable I/O pins

New HAL read/write functions for data bus with enabling/disabling A1/A2
Changed watchdog mode function / disable no longer available

New PFE function for edge/level interrupt mode

New HAL functions for retentive operators

New HAL functions for watchdog

New PFE function for timers

New HAL functions for timers

End of document

http://www.bcl.de/

BELCK

Beck IPC Gmbh

Hardware API Layers - BIOS V1.02 Beta

IPC@Chip Documentation Index Hardware APl News

Hardware API Layers

Layer model:

INT6F {Service Interrupt) PFE
{Pin Function Enabler)

1. INT 6Fh - Service Interrupt Handler

The service interrupt provides software compatibility with the Beck FEC product line. This interrupt is used
only in Beck products based on the IPC@Chip and is not part of the standard BIOS. These services use
the PFE and HAL interfaces to contact the actual hardware.

2. PFE - Pin Function Enabler

This part of the hardware API provides functions to control the IPC@Chip's multi-function 1/0 pins.

3. HAL - Hardware Abstraction Layer

This part of the hardware API provide an isolation layer between your application software and the
IPC@Chip hardware (P10 pins, timers, etc.) which minizes hardware dependancies.

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

|2C Bus Interface - BIOS V1.02 Beta

IPC@Chip Documentation Index I2C Bus API News

I2C Bus API

Here are the interface definitions for access to the IPC@Chip's 12C bus.

. 12C Bus API News

API Functions

The 12C Bus API provides interrupt OXAA with a service number in the high order byte of the AX register (AH).
This interface provides access to the 12C Bus of the IPC@Chip for application programs.

Interrupt_ OxAA_function_0x80: Initialize the I2C Bus
Interrupt OXAA_ function 0x81: Scan I2C Devices
. Interrupt OxAA function 0x82: Transmit / Receive Character
. Interrupt OXAA function 0x83: Transmit/ Receive Block
Interrupt OXAA_function 0x84: Release 12C Bus
Interrupt_ OxAA_ function_0x8b: Restart the [2C Bus
. Interrupt OxAA function Ox8E: Select I12C Clock Pin
. Interrupt OxAA function Ox8F: Select |12C Data Pin

Interrupt OXAA service 0x80: Initialize the 12C Bus

This function sets the 12C bus clock speed to that specified by the caller. It also configures two of the
programmable 1/0O (PIO) pins for usage as 12C bus data and clock signals.

Parameters
AH

0x80
AL

no longer used

http://www.bcl.de/

CX

Comments

The user can specify which two PIO are used for 12C clock and data . After calling this initialization
function, these two pins will no longer be available as P1O pins unless the PFE Enable function is called
for these pins following this function call.

Related Topics

Select I12C Clock Pin
Select 12C Data Pin
PFE: Enable Programmable I/O Pins

Top of list
Index page

Interrupt OXAA service 0x81: Scan I12C Devices

Report addresses of slave devices, one at a time.

Parameters
AH

0x81
AL

First slave address (even address, LSB=0)

CL
Last slave address (even address, LSB=0)

Return Value

AL: 0 no slave found
AL: -1 Timeout
AL: address of the first found slave

Comments

This is an iterator function which is called repetitively to determine all connected slaves. Specify on each
successive call a new restricted slave address range until no further address is returned by this function.

Top of list

Index page

Interrupt OXAA service 0x82: Transmit / Receive Character

Send or receive a single character.

Parameters
AH

0x82
AL

Slave address, LSB:0 => Transmit, LSB:1 => Receive

CL
If Transmit: CL = Byte to transmit
If Receive: CL = 0 for last char to be received

Return Value

Success: Carry flag cleared and CH contains received byte (if receiving)
Failure: Carry flag set and AL contains 12C error code

Comments

The IPC@Chip is the 12C bus master.

The least significant bit of the slave address determines the direction of the communication.
Even address: Master sending to slave
Odd address: Master receiving from slave

12C error codes:

5: Bus allocated

6: Bus arbitration failed

7: Bus error

8: Timeout

9: Slave faulty or not available

Related Topics

12C Transmit/Receive Block

Top of list
Index page

Interrupt OXAA service 0x83: Transmit/ Receive Block

Parameters

AH
0x83
AL
Slave address, LSB:0 => Transmit, LSB:1 => Receive
CX
Number of bytes to transmit or receive
ES:BX

Buffer address

Return Value

Success: Carry flag cleared
Failure: Carry flag set and AL contains 12C error code

Comments

If an odd slave address is specified in AL then this function will dwell here until either CX bytes are
received and stored in user buffer at [ES:BX], or until an error occurs. For an even slave address this
function will dwell here until CX bytes from user buffer at [ES:BX] are transmit or until an error occurs.

Related Topics

12C Transmit/Receive Character

Top of list
Index page

Interrupt OXAA service 0x84: Release 12C Bus
Parameters

AH
0x84

Top of list
Index page

Interrupt OXAA service 0x8b: Restart the 12C Bus

Parameters

AH
0x8b

Return Value

CF: 0

Top of list
Index page

Interrupt OXAA service Ox8E: Select 12C Clock Pin

Select IPC@Chip 1/O pin to be used for I2CCLK signal.

Parameters
AH

Ox8E
AL

P1O pin number, [0..13]
Return Value

none
Comments

The default I12C clock pinis PIO 0
To change the I2CCLK pin this function must be called before the 12C initialize function (0x80) is called.

Related Topics

Initialize 12C Bus Function
Select 12C Data Pin

Top of list
Index page

Interrupt OXAA service 0x8F: Select 12C Data Pin

Select IPC@Chip 1/0 pin to be used for I2CDAT signal.

Parameters

AH
Ox8F

AL
PI1O pin number, [0..13]

Return Value
none

Comments

The default 12C data pin is PIO 1
To change the I2CDAT pin this function must be called before the 12C initialize function (0x80) is called.

Related Topics

Initialize 12C Bus Function
Select 12C Clock Pin

Top of list
Index page

End of document

BELCK

Beck IPC GabH

Fossil API - BIOS V1.02 Beta

IPC@Chip Documentation Index

FOSSIL

API definition for access to the serial ports COM and EXT.
The fossil standard uses software interrupt 0x14.

New in version 0.68: Added Get driver info function

New in version 0.66: Added RS485 pin select function

New in version 0.66: Changed function RS485 Enable/Disable

. Interrupt 0x14 function 0x00:

Set baud rate

. Interrupt 0x14 function 0x01:

Put byte in output buffer, wait if needed.

Interrupt 0x14 function 0x02:

Get a byte from the serial port, wait if none available.

Interrupt 0x14 function 0x03:

Status request

. Interrupt 0x14 function 0x04:

Initialize fossil driver

. Interrupt 0x14 function 0xO05:

Deinitialize fossil driver

. Interrupt 0x14 function 0x08:

Flush output buffer waiting until done.

Interrupt 0x14 function 0x09:

Purge output buffer.

Interrupt 0x14 function OxOA:

Purge receive buffer.

. Interrupt 0x14 function 0xOB:

Transmit byte, do not wait.

. Interrupt 0x14 function 0xOC:

Peek if next byte is available.

. Interrupt 0x14 function OxOF:

Enable/disable flow control.

Interrupt 0x14 function 0x18:

Read block of data

Interrupt 0x14 function 0x19:

Write a block of data

. Interrupt 0x14 function 0x1B:

Get driver info

. Interrupt 0x14 function 0x80:

Enable/Disable RS485 mode

. Interrupt 0x14 function 0x81:

Extended line control initialization

Interrupt 0x14 function 0x82:

Select RS485 pin

Interrupt 0x14 service 0x00: Set baud rate

Set the baud rate of the serial port

http://www.bcl.de/

Parameters

AH
0x00

AL
Configuration parameter.
Bits 7--5: Baud rate, 4--3: Parity, 2: Stop bits, 1--0 Word length.

Bits 7--5: Baud rate
000 19200
001 38400
010 300
011 600
100 1200
101 2400
110 4800
111 9600

Bits 4--3: Parity
00 None
01 Odd
11 Even

Bit 2: Stop bits
0: 1 Stop bit
1: 2 Stop bits (available only when no parity is set)

Bits 1--0: Word length
1 0: 7 bits
11: 8 bits

DX
Port number: O for EXT, 1 for COM

Return Value

AH: Status code (see service 0x03)

Comments

For higher baud rates use service 0x81 "Extended line control initialization"
Two stop bits are only available if no parity is set.

Top of list
Index page

Interrupt 0x14 service 0x01: Put byte in output buffer, wait if needed.

Character is queued for transmission. If there is space in the transmitter buffer when this call is made,
the character will be stored and control returned to caller. If the buffer is full, the driver will wait for

space. (This can be dangerous when used in combination with flow control.)

Parameters
AH

0x01
AL

Byte to be written

DX
Port number: O for EXT, 1 for COM

Return Value

AH: Status code (see service 0x03)

Top of list
Index page

Interrupt Ox14 service 0x02: Get a byte from the serial port, wait if none available.

Reads a byte from the receiver buffer. Wait for a byte to arrive if none is available.

Parameters
AH

0x02
DX

Port number: O for EXT, 1 for COM

Return Value

AL: The byte received

Top of list
Index page

Interrupt 0x14 service 0x03: Status request

Return the status of the serial port.

Parameters

AH
0x03

DX
Port number: O for EXT, 1 for COM

Return Value

AH: Status code (bit field):
bit 6: Set if output buffer is empty.
bit 5: Set if output buffer is not full.
bit 4. Line break detected
bit 3: Framing error detected
bit 2: Parity error detected
bit 1: Set if overrun occurred on receiver.
bit 0: Set if data is available in receiver buffer.

Comments

Any reported UART error flags are cleared by hardware after the read is made for this call.

Top of list
Index page

Interrupt 0x14 service 0x04: Initialize fossil driver

Initialize the fossil driver for specified port.

Parameters
AH

0x04
DX

Port specifier: 0 for EXT, 1 for COM
Return Value

AX: 0x1954 if success
Comments

Use this function to detect if the fossil driver is available for this port. The user must make sure that only
one process opens a port. If this port is used for standard input or output (console), then stdin/stdout

will be disabled for this port.

Top of list

Index page

Interrupt Ox14 service 0x05: Deinitialize fossil driver

Deinitialize the fossil driver for specified port.

Parameters
AH

0x05
DX

Port specifier: O for EXT, 1 for COM

Return Value

none

Top of list
Index page

Interrupt Ox14 service 0x08: Flush output buffer waiting until done.

Wait for all output in the output buffer to be transmitted.

Parameters
AH

0x08
DX

Port number: O for EXT, 1 for COM

Return Value

none

Top of list
Index page

Interrupt Ox14 service 0x09: Purge output buffer.

Remove all data from the output buffer.

Parameters

AH
0x09

DX
Port number: O for EXT, 1 for COM

Return Value

none

Top of list
Index page

Interrupt 0x14 service 0x0A: Purge receive buffer.

Remove all data from the receive buffer.

Parameters
AH

Ox0A
DX

Port number: O for EXT, 1 for COM

Return Value

none

Top of list
Index page

Interrupt Ox14 service OxOB: Transmit byte, do not wait.

Place a byte in the transmit buffer if there is space available. Otherwise simply return with AX=0, without
handling the transmit byte.

Parameters

AH
0Ox0B

AL

Byte to transmit

DX
Port number: O for EXT, 1 for COM

Return Value

AX=0 if byte was not accepted (no space in buffer)
AX=1 if byte was placed in buffer

Top of list
Index page

Interrupt 0x14 service 0x0C: Peek if next byte is available.

Returns the next byte available in the receive buffer, without removing it from the buffer.

Parameters
AH

0oxoC
DX

Port number: O for EXT, 1 for COM

Return Value

AX=0xFFFF if no byte was available
AH=0x00 and AL=next byte, if a byte was available.

Top of list
Index page

Interrupt Ox14 service OxOF: Enable/disable flow control.

Configure the flow control for a port.

Parameters
AH

OxOF
AL

Bit mask describing requested flow control.

DX
Port number: O for EXT, 1 for COM

Return Value

none

Comments

Bit fields for FOSSIL data flow control:
BO: XON/XOFF on transmit (watch for XOFF while sending)
B1: CTS/RTS (CTS on transmit/RTS on receive)
B2: reserved
B3: XON/XOFF on receive (send XOFF when buffer near full)
B4-B7: Ignored

Notes:
o XON/XOFF and CTS/RTS are not allowed at the same time.

Developer Notes

Since BIOS 1.02B XON/XOFF mode is also available if the DMA mode for the COM port is enabled but because

of the internal functionality of DMA it is not possible to detect an XON or XOFF of the peer immediateley. It is
possible that an overrun situation at the connected peer (e.g. GSM modem) could occur. We enable this mode
now because GSM modems (any??) supports only XON/XOFF flow ctrl.

Top of list
Index page

Interrupt 0x14 service 0x18: Read block of data

Read up to a specified number of bytes from a serial port.

Parameters
AH

0x18
CX

Maximum number of bytes to transfer.

DX
Port number: O for EXT, 1 for COM

ES:DI
Pointer to user buffer.

Return Value

AX= Number of bytes transferred.

Top of list
Index page

Interrupt Ox14 service 0x19: Write a block of data

Write a block of data to the serial port buffer.

Parameters
AH

0x19
CX

Maximum number of bytes to transfer.

DX
Port number: O for EXT, 1 for COM

ES:DI
Pointer to user buffer.

Return Value

AX= Number of bytes actually transferred.

Top of list
Index page

Interrupt 0x14 service 0x1B: Get driver info

Get information about a serial port and driver

Parameters
AH

0x1B
CX

Size of buffer

DX

ES:DI

Port number: O for EXT, 1 for COM

Pointer to user buffer.

Return Value

AX=Number of bytes actually transferred.

Comments

Offset O (word) = Structure size

Offset 2 (byte) = FOSSIL spec version (not used)
Offset 3 (byte) = Driver rev level (not used)
Offset 4 (dword) = Pointer to ASCII ID (not used)
Offset 8 (word) = Input buffer size

Offset OA (word) = Bytes available (input)

Offset OC (word) = Output buffer size

Offset OE (word) = Bytes available (output)
Offset 10 (byte) = Screen width, chars (not used)
Offset 11 (byte) = Screen height, chars (not used)
Offset 12 (byte) = Baud rate mask (not used)

This function was only added for compatibility to older fossil applications

Top of list
Index page

Interrupt 0x14 service 0x80: Enable/Disable RS485 mode

Enable the RS485 mode.

Parameters
AH

0x80
AL

DX

0=TxEnable low active
1=TxEnable high active
2=Disable RS485 mode

Port number: O for EXT, 1 for COM

Return Value

none

Comments

By default the RTSO and RTS1 signals (pins) are used to enable/disable the respective (EXT or COM)
transmitter. (TxEnable)

Top of list
Index page

Interrupt 0x14 service 0x81: Extended line control initialization

Extended line control initialization.

Parameters
AH
0x81
AL
UART character data bits
2: 7 bits
3: 8 bits
BH
Parity
0: no parity
1: odd parity
2: even parity
3: mark parity (always 1)
4: space parity (always 0)
BL
Stop bits
0: 1 Stop bit
1: 2 Stop bits (only available when no parity is selected)
CX
Baud rate divider
(for maximum baud rate see HAL function 0x8A)
DX

Port number: O for EXT, 1 for COM

Return Value

none

Comments

Two stop bits are only available if no parity is set.

Developer Notes

Parity settings "Mark" and "Space”, and two stop bits are not checked on received data by the @Chip (UART) or
the API. This is due to these modes are not available in hardware. These modes are provided to communicate
with hardware that can operate only in these modes.

Top of list
Index page

Interrupt Ox14 service 0x82: Select RS485 pin

Select the RS485 TxEnable pin

Parameters
AH

0x82
AL

No of PIO pin [0..13]

DX
Port number: O for EXT, 1 for COM

Return Value
none
Comments

By default the RTS0O and RTS1 signals (pins) are used to enable/disable the respective transmitter.
(TxEnable) This function lets you select any PIO from 0-13 as TxEnable, but not any makes sense. To
change the default, call this function before you call the RS485 Enable function.

Top of list
Index page

End of document

BELCK

Beck IPC GabH

PPP Interface - BIOS V1.02 Beta

IPC@Chip Documentation Index

Introduction

Here is a short description of how to configure the SC12 PPP server.

The PPP server is available starting with BIOS version SC12V0067PPP. (There also
exists a BIOS version SC12V0067 without the PPP server.) The PPP client API is
available starting with BIOS 070.

The PPP client and server API calls are part of the TCP/IP API. These API calls are described
in the TCP/IP API documentation. Only configuration of the PPP server is described here.

Topics:
o About PPP
o Configuring the PPP Server
o PPP Server API
o PPP Client API
o Available Examples

About PPP

Since SC12 BIOS version 067 Beta a PPP server is available in the SC12.

PPP (the Point to Point Protocol) is a mechanism for creating and running TCP/IP
over a serial link - be that a direct serial connection (using a null-modem cable),
or a link made using an analogue modem.

Other computers can dial into the SC12 PPP server and communicate via the TCP/IP link
using FTP, Telnet, Web, etc. in the same manner as with an Ethernet TCP/IP link.

One major difference between a PPP and an Ethernet connection is of course the speed.
A standard Ethernet connection operates at 10 Mbs maximum theoretical throughput,
whereas an analogue modem operates at speeds up to 56 kbps.

PPP is strictly a peer to peer protocol; there is no difference between the machine

that dials in and the machine that is dialed into. However, it is still useful to think

in terms of servers and clients. When you dial into a site to establish a PPP connection,
you are a considered the client. The machine to which you connect (e.g. the SC12) is
considered the server.

PPP at the IPC@Chip includes the subprotocols LCP and NCP(IPCP).

http://www.bcl.de/

Supported authentication protocols are PAP and CHAP.

Top of list
Index page

Configuring the PPP Server

The PPP server must be configured using the chi p. i ni file sections [PPPSERVER]
and [SERIAL]. All entries for configuring the PPP server are listed in the config.htm file.

Here is an outline of the steps required to configure the PPP server.

1.

Disable/enable PPP server

ENABLE=0 or ENABLE=1
By default, PPP server is enabled.

Select a COM port for the PPP server to use with the COMPORT directive.

Important :
The COM and EXT port of the SC12 has only CTS,RTS,RxD and TxD lines,
S0 you have to configure your modem with DTR always on.
(e.g. AT cmd for a ZyXEL modem: AT&DO)

Increase the send and receive queue sizes of the chosen serial port (EXT or COM).
Recommended size is 4096 Bytes.

Example chi p.ini settings for the EXT port:

[SERI AL]
EXT_RECVQUEUE=4096
EXT_SENDQUEUE=4096

Select the flow control mode for the PPP server COM port.

Set the baud rate of PPP server's COM port e.g. BAUD =19200 (default is 38400)

Select usage of an analogue modem: MODEM =1.
The default is O (null modem cable).

Set the IP_ Address of the PPP server interface e.g. ADDRESS=192. 168. 206. 4

Set the REMOTE IP Address for the connected host.

Three different possibilities for configuring PPP server IP addresses at the IPC@Chip:

1. If valid addresses for IP Addressand REMOTE IP Addressare declared at chip.ini, the

PPP server wants to use this configured IP for its own and want to configure the remote
peer with the defined remote address.

2. If only IP_Addressis declared at chip.iniand REMOTE IP Addressis set to 0.0.0.0, the

9.

10.

11.

PPP server wants to use his defined address and expects that the client uses his own
address.

3. If both entries IP Addressand REMOTE IP Addressare set to 0.0.0.0, the PPP server
expects an IP address from the peer.

Define net mask and router default gateway , e.g.

NETMASK=255. 255. 255. 0
GATEWAY=192. 168. 206. 4

Note about IP FORWARDING:
Since BIOS version 067 the SC12 has two network interfaces, Ethernet and PPP,
so the SC12 can forward IP packets between these interfaces.
If you define a gateway in the PPPSERVER section of the chi p. i ni for the PPP
server interface, it becomes the default gateway for all interfaces when a PPP link to the
server is established. During a PPP server connection the command i pcf g indicates
this
default gateway. After the PPP session, the old gateway (if any) for the Ethernet
interface will be restored. As of BIOS version 070, the TCP/IP API supports adding
and deleting a default gateway:

Choose authentication mode with the AUTH directive.

Initialize the analogue modem.

You can define three sets of modem initialization parameters. These parameters are
used to initialize the modem at the start of the SC12 BIOS and after a modem hang-up
following a PPP session.

Each of the three parameter sets consists of the following four parameters:
« INITCMD string - Command sent to the modem to initialize it.

« INITANSWER string - Expected modem response to initialization command.

« INITTIMEOUT integer - Number of seconds to wait on answer from modem.

« INITRETRIES integer - Number of times to repeat modem initialization sequence if a
previous attempt fails.

Example:

I NI TCMDO=ATZ

I NI TANSWERO=CK
I NI TTI MEQUTO=2
I Nl TRETRI ESO=3

I NI TCVMD1=AT&DO
I NI TANSVER1=CK
[NITTI MEQUT1=2
I Nl TRETRI ES1=3

I NI TCVD2=AT

I NI TANSVER2=0CK
I NITTI MEQUT2=2
I NI TRETRI ES2=2

12.

13.

A timeout value 0 means wait forever for the modem's answer.
If you enter the string NULL at an INITANSWER (e.g. INITANSWERO=NULL), the SC12 PPP
server will not wait for an answer from the modem.

Define a maximum of three modem commands for getting connected to the remote peer.
Example:

CONNECTMSQ0=RI NG
CONNECTANSWVERO=ATA
CONNECTTI MEQUTO0=0
CONNECTMSGL=CONNECT
CONNECTTI MEQUT1=60

These are the default values for modem connect commands.

In this example the PPP server waits forever for the RING message and sends

an ATA to the modem if it responds to the RING. After that the server waits

a maximum of 60 seconds for a response to the CONNECT message. The modem link
is established. The server now establishes the PPP connection to the remote

client.

Note:
Do not use the AT command ATS0=1, this will cause the modem to automatically
answer the call without waiting for the PPP server. This is too fast for the PPP server.

Hang-up the connection.

The PPP server will attempt to hang-up the modem when either a connection
is closed by a remote peer, or if the modem initialization failed during
the SC12 boot process.

. Switch the modem into the command mode (CMDMODE and HANGUPDELAY')

Example:

CVDVODE=+++
HANGUPDEL AY=2

These are the default values.

a. Define modem commands and expected answers for hang-up .
Again, up to three sets of these parameters can be given here.

Example:

HANGUPCVDO=ATHO

HANGUPANSVERO=CK
HANGUPTI MEQUT0=2
HANGUPRETRI ESO=1

If you enter the string NULL at an HANGUPANSWERX (e.g. HANGUPANSWERO=NULL),

the SC12 PPP
server will not wait for an answer from the modem.

14. Control the online state while PPP session is open

You can define three sets of modem control parameters. These parameters are
used to check the online state of the modem at an open PPP connection.

. Enable online control sequence MODEMCTRL =1.
The default is O (disabled).

Example:
MODEMCTRL=1

Also you have to configure a control time interval (in seconds). After each time interval,
within the PPP server receive no data, the server executes the configured modem
commands.
The server closes the connection, if one of the expected answers timed out.

a. Define a CTRLTIME |

E.g. CTRLTI ME=120 default is 60 seconds

Each of the three parameter sets consists of the following four parameters:
«» CTRLCMD string - Command sent to the modem to initialize it.

«» CTRLANSWER string - Expected modem response to control command.

« CTRLTIMEOUT integer - Number of seconds to wait on answer from modem.

«» CTRLRETRIES integer - Number of times to repeat modem control sequence if a
previous attempt fails.

Example and default settings:

CTRLCMDO=+++

CTRLANSWERO=CK
CTRLTI MEQUTO=3
CTRLRETRI ESO=1

CTRLCMVD1=ATO
CTRLANSWER1=NULL
CTRLTI MEQUT1=1
CTRLRETRI ES1=0

If you enter the string NULL at an CTRLANSWERXx (e.g.
CTRLANSWERO=NULL), the SCl2 PPP
server will not wait for an answer from the nodem

15. Define a tine out value in seconds after which the PPP server hangs up

the connection if no data cones in fromclient during this tineout
peri od.

E.g. | DLETI ME=160 default is 120

Top of list
| ndex page

PPP Server AP

The TCP/ I P API

1. Interrupt
2. I nterrupt
3. I nterrupt
4. I nterrupt
5. I nterrupt
Top of Iist
| ndex page

provides five calls that apply to the PPP server

OxAC
OxAC
OxAC,
OxAC
OxAC

Servi ce

0x50 :

Servi ce

0Ox51 :

Servi ce

0x52 :

Servi ce

0Ox53 :

Servi ce

0x54 :

Check if the PPP server is installed.
Suspend PPP server task

Activate PPP server

Get current state of the PPP server

Get the PPP server configuration

PPP Client API

The TCP/ I P API

1. I nterrupt
2. Interrupt
3. Interrupt
4. I nterrupt
Top of Ilist
| ndex page

provides four calls that apply to the PPP client.

OxAC
OxAC,
OxAC

OxAC

Servi ce

0x40 :

Servi ce

0x41 :

Servi ce

0x42 :

Servi ce

0x43 :

Check if the PPP client is install ed.
Open a connection to PPP server
Cl ose connecti on

CGet current state of the PPP client

Avai | abl e Exanpl es

The foll owi ng exanpl e code is avail abl e:

o PPP server API

o PPP client exanple,

Top of Iist
| ndex page

t est,

PPPS. C

PPPCLI E. C

End of docunent

BELCK

Beck IPC GabH

I2C Bus APl Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

I2C Bus APl News

The following extensions to the I2C API are available in the indicated BIOS revisions.

New in version 1.00: Changed 12C Bus init function
New in version 0.70: 12C functions for definition of 12C bus pins

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

DOS Interface Documentation - BIOS V1.02 Beta

IPC@Chip Documentation Index

DOS API News

DOS

Here are the DOS interface definitions.
the AX register (AH).

DOS API News

DOS uses interrupt 0x21 with a service number in the high order byte of

All implemented DOS services are listed here:

. Interrupt 0x21 function 0x00:

Terminate Program

Interrupt 0x21 function 0x02:

Output Character to standard output

Interrupt 0x21 function 0xO06:

Direct Console Output

. Interrupt 0x21 function 0xO07:

Direct Console Input

. Interrupt 0x21 function 0x08:

Read Keyboard

. Interrupt 0x21 function 0x09:

Send string to standard output

Interrupt 0x21 function OxOB:

Character Available Test

Interrupt 0x21 function OxOE:

Set Default Drive

. Interrupt 0x21 function 0x19:

Get Current Drive

. Interrupt 0x21 function Ox1A:

Set Disk Transfer Area Address

Interrupt 0x21 function 0x25:

Set IRQ Vector

Interrupt 0x21 function Ox2A:

Get System Date

Interrupt 0x21 function O0x2B:

Set System Date

. Interrupt 0x21 function 0x2C:

Get System Time

. Interrupt 0x21 function 0x2D:

Set System Time

Interrupt 0x21 function Ox2F:

Get Disk Transfer Area Address

Interrupt 0x21 function 0x30:

Get DOS Version

Interrupt 0x21 function 0x31:

Keep Process

. Interrupt 0x21 function 0x35:

Get IRQ Vector

. Interrupt 0x21 function 0x36:

Get Disk Free Space

Interrupt 0x21 function 0x39:

Create Directory

Interrupt 0x21 function Ox3A:

Remove Directory

Interrupt 0x21 function 0x3B:

Set Current Working Directory

. Interrupt 0x21 function 0x3C:

Create New File Handle

. Interrupt 0x21 function 0x3D:

Open an Existing File

http://www.bcl.de/

. Interrupt 0x21 function Ox3E: Close File Handle

. Interrupt 0x21 function Ox3F: Read from File

. Interrupt 0x21 function 0x40: Write to File

. Interrupt 0x21 function 0x41: Delete File

. Interrupt 0x21 function 0x42:. Set Current File Position

. Interrupt 0x21 function 0x43: Get/Set File Attributes

. Interrupt 0x21 function 0x44:. I0CTL, Set/Get Device Information
. Interrupt 0x21 function 0x47:. Get Current Working Directory

. Interrupt 0x21 function 0x48:. Allocate Memory

. Interrupt 0x21 function 0x49:. Free Allocated Memory

. Interrupt 0x21 function Ox4A: Resize Memory

. Interrupt 0x21 function 0x4B: EXEC

. Interrupt 0x21 function 0x4C:. End Process

. Interrupt 0x21 function Ox4E: Find First File

. Interrupt 0x21 function Ox4F: Find Next File

. Interrupt 0x21 function 0x50: Debugger Support

. Interrupt 0x21 function_0x51: Get PSP Segment Address

. Interrupt 0x21 function 0x56: Change Directory Entry, Rename File
. Interrupt 0x21 function 0x57:. Get/Set File Date and Time

. Interrupt 0x21 function 0x58:. Get/Set memory strategy (dummy function)
. Interrupt 0Ox21 function 0x62: Get PSP Segment Address

. Interrupt 0x21 function_0x63: Get Leading Byte (stub)

. Interrupt 0x21 function 0x68:. Flush DOS Buffers to Disk

Any service not listed is not supported. A warning will be issued on the console when an unimplemented DOS

interrupt 0x21 service is requested. If you need a function that is not supported, please let us know at

mailto:atchip@beck-ipc.com

A maximum of 12 DOS programs can run.

All DOS tasks together can open a maximum of 10 files.

Interrupt O0x21 service 0x00: Terminate Program

Refer to interrupt Ox21, service 0x4C .

Parameters

AH
0x00

Comments

This service has been replaced by service 0x4C. The system will treat both as the same function.

Top of list

Index page

Interrupt 0x21 service 0x02: Output Character to standard output

Send the character in DL to the standard output.

Parameters
AH

0x02
DL

Character to be output to st dout

Return Value

Returns nothing

Comments

Each potential output device has its own output buffer. This function queues the provided output
character into each device's output buffer for which st dout is configured.

The transmitters are interrupt driven buffered 1/0. If space is available in the transmit buffer(s) when this

call is made, the character is stored and control returned immediately to the caller. Otherwise a wait
loop is entered, awaiting space in each configured transmit buffer.

This function does not check for Ctrl-C.

Related Topics

st dout configuration

Top of list
Index page

Interrupt O0x21 service 0x06: Direct Console Output

If DL!=0OxFF: Send the character in DL to the standard output.
If DL==0xFF: read character from st di n if one is available.

Parameters

AH
0x06

DL
Character to be output to st dout

Return Value

If call with DL!=0xFF then no return value (only output to st dout)
If call with DL==0xFF then
If input character is available at st di nthen
Return input character in AL and reset CPU's zero flag
Else
Set CPU's zero flag to indicate no character available
Endif
Endif

Returns at BX the source stdin channel of the character: 1: EXT , 2: COM , 4: Telnet
Comments

Output is buffered and interrupt driven. This function will return after placing output character into the
transmit buffer.

This function does not check for Ctrl-C.
Related Topics

st di n configuration
st dout configuration

Top of list
Index page

Interrupt O0x21 service 0x07: Direct Console Input
Wait for a character to be read from standard input
Parameters

AH
0x07

Return Value
Returns the character read in AL.
Comments

This function is identical to interrupt 0x21, service 0x08 .

This function does not echo the received character and it does not check for Ctrl-C.

Related Topics

st di n configuration

Top of list
Index page

Interrupt 0x21 service 0x08: Read Keyboard
Wait for a character to be read from standard input
Parameters

AH
0x08

Return Value

Returns the character read in AL.
Returns at BX the source stdin channel of the character: 1: EXT , 2: COM , 4: Telnet

Comments

This function is identical to interrupt 0x21, service 0x07 .

This function does not echo the character and it does not check for Ctrl-C.

Related Topics

st di n configuration

Top of list
Index page

Interrupt 0x21 service 0x09: Send string to standard output
Send a string to st dout ending with '$' or null terminated.
Parameters

AH
0x09

DS:DX
Specifies a pointer to the first character of the string.

Return Value

Returns nothing.
Comments

This function does not check for Ctrl-C.
Related Topics

st dout configuration

Top of list
Index page

Interrupt 0x21 service 0x0B: Character Available Test
Check if a character from standard input is available.
Parameters

AH
0x0B

Return Value

AL=0x00: No character is available.
AL=0xFF: Character is available.

Comments
This function does not check for Ctrl-C.
Related Topics

st di n configuration

Top of list
Index page

Interrupt 0x21 service OxOE: Set Default Drive

Change the default drive for the current task.

Parameters
AH

Ox0E
DL

new default drive (00h = A:, 01h = B;, etc)
Related Topics

Get current drive

Top of list
Index page

Interrupt 0x21 service 0x19: Get Current Drive
Returns the current drive for this process.
Parameters

AH
0x19

Return Value
AL=drive where Qis A;,1isB;, ..., 4is E:
Related Topics

Set default drive

Top of list
Index page

Interrupt 0x21 service Ox1A: Set Disk Transfer Area Address
Set address of the Disk Transfer Area (DTA) needed for f i ndf i r st/ fi ndnext functions.
Parameters

AH

Ox2A

DS:DX
Pointer to DTA

Comments

The main task of your application has a standard pointer to a Disk Transfer Area of the program. Tasks
created with the RTOS API inside of your application use a DTA from an internal list. A task, which gets
access to the file system (via RTX ACCESS Fl LESYSTEMservice) reserves an entry in this list.

Only ten DTA entries for user tasks are available.

Related Topics

DOS Get Disk Transfer Area address service
RTOS's RTX ACCESS Fl LESYSTEMService

Top of list
Index page

Interrupt 0x21 service 0x25: Set IRQ Vector

This function allows you to set an interrupt vector to your interrupt function.
You can use the following IRQ's

OXOADMAO / INT5

OxOBDMAL1 / INT6

OXOCINTO

OXOEINT2

OXOFINT3

0x10 INT4

Parameters

AH
0x25

AL
Specifies vector number.

DS:DX
Vector to your interrupt procedure.

Return Value

No return value.

Comments

IRQ 0x0D (Ethernet) and IRQ 0x13 (Timer) cannot be changed !

Also this DOS service interrupt Ox21 vector cannot be changed using this service.
Related Topics

Get IRQ vector

Top of list
Index page

Interrupt 0x21 service Ox2A: Get System Date
Returns the system date
Parameters

AH
Ox2A

Return Value
CX=Year (full 4 digits), DH=Month, DL=Day, AL=day of week (0=Sunday)
Related Topics

Set system date
Get system time

Top of list
Index page

Interrupt Ox21 service 0x2B: Set System Date

Sets the system date.

Parameters
AH

0x2B
CX

Year (including century, e.g. 2001)

DH
Month (1..12)

DL
Day (1..31)

Comments
This function performs no error checking on entered date.
Related Topics

Get system date
Set system time

Top of list
Index page

Interrupt 0x21 service 0x2C: Get System Time
Returns the system time
Parameters

AH
0x2C

Return Value
CH=Hour, CL=Minute, DH=Second, DL=0
Related Topics

Get system date
Set system time

Top of list
Index page

Interrupt 0x21 service 0x2D: Set System Time

Sets the system time

Parameters

AH

0x2D
CH

Hour
CL

Minute
DH

Second

Related Topics

Set system date
Get system time

Top of list
Index page

Interrupt O0x21 service Ox2F: Get Disk Transfer Area Address
Get address of the Disk Transfer Area (DTA) needed for findfirst/findnext.
Parameters

AH
Ox2F

Return Value
Returns the address of the DTA in ES:BX
Comments

The main task of your application has a standard pointer to a Disk Transfer Area of the program. Tasks
created with the RTOS API inside of your application use a DTA from an internal list. A task, which gets
access to the file system (via RTX _ACCESS FI LESYSTEMservice) reserves an entry in this list.

Only ten DTA entries for user tasks are available.

Related Topics

DOS Set Disk Transfer Area address service
RTOS's RTX ACCESS F| LESYSTEMService

Top of list
Index page

Interrupt 0x21 service 0x30: Get DOS Version
Get the version number of DOS.
Parameters

AH
0x30

Return Value
Returns the DOS version in AX.
Comments

This function always returns 0x0003 (meaning version 3.00).
However, this does not mean that we have a full implementation of DOS 3.0 !

Top of list
Index page

Interrupt 0x21 service 0x31: Keep Process

Makes a program remain resident after it terminates.

Parameters
AH

0x31
DX

Memory size, in paragraphs, required by the program

Return Value

None

Top of list
Index page

Interrupt 0x21 service 0x35: Get IRQ Vector

Get the address of an interrupt service routine.

Parameters
AH

0x35
AL

Specifies vector number.
Return Value

Returns the vector in ES:BX
Related Topics

Set IRQ vector

Top of list
Index page

Interrupt Ox21 service 0x36: Get Disk Free Space

Simplified DOS function for detecting disk free space.

Parameters
AH

0x36
DL

Drive (O current drive, 1=A, ...)

Return Value

AX: -1 Invalid drive number
else

AX: always 1

BX: number of free sectors

CX: bytes per sector

DX: always 1

Comments

When call is successful (AX=1), free disk space can be computed from the return values as:

free disk space (bytes) = BX * CX
At BIOS version 1.00 this function had a bug: Parameter 0 at DL was drive A:,
but value of 0 at DL should mean the current drive.

Top of list
Index page

Interrupt 0x21 service 0x39: Create Directory
Create a new subdirectory
Parameters

AH
0x39

DS:DX
Pointer to null terminated path name.

Return Value

Carry flag is cleared on success, set on error.
On error AX contains error code:

2: File not found

3: Path not found

5: Path exists or access denied

Related Topics

Remove Directory

Top of list
Index page

Interrupt 0x21 service Ox3A: Remove Directory
Delete a subdirectory.
Parameters

AH
Ox3A

DS:DX
Pointer to null terminated path name.

Return Value

Carry flag is cleared on success, set on error.
On error AX contains error code:
2: File not found
3: Path not found
5: access denied, not a directory, not empty, or in use

Comments
The subdirectory must not contain any files.
Related Topics

Create Directory

Top of list
Index page

Interrupt 0x21 service 0x3B: Set Current Working Directory
Set current working directory.
Parameters

AH
0x3B

DS:DX
Null terminated path of new current working directory

Return Value
Carry flag is cleared on success, set on error.
Comments

If the path contains a drive name, the current working directory of that drive is changed without changing
the default drive. Otherwise, the current working directory is changed for the default drive.

Each task has it's own current working directory.
Related Topics

Get current working directory

Top of list
Index page

Interrupt 0x21 service 0x3C: Create New File Handle

Create a file of specified name. If a file by this name already exists, it is deleted. The returned file
handle is for a new empty file.

Parameters
AH

0x3C
CX

File attributes (bit field):
BO - Read Only
B1 - Hidden File
B2 - System File
B5 - Archive Flag

DS:DX
Pointer to a null terminated file name and path

Return Value

Success: Carry flag cleared, AX = file handle
Failure: Carry flag set, AX = error code:
AX=2: Path not found
AX=3: File name length exceeded 147 character limit
AX=4: Too many files open
AX=5: Invalid file name or access denied

Comments
Files are always opened in a non-sharing mode.
Related Topics

Open Existing File
Close File Handle

Top of list
Index page

Interrupt 0x21 service 0x3D: Open an Existing File

Opens an existing file.

Parameters

AH
0x3D
AL
Open mode:
AL=0: Open for read
AL=1: Open for write
AL=2: Open for read and write
DS:DX

Pointer to a null terminated file path.
Return Value

Success: Carry flag cleared, AX = file handle
Failure: Carry flag set, AX = error code:
AX=2: Path or file not found
AX=4: Too many files open
AX=5: Access denied

Comments

In writing mode files are always opened in a non-sharing mode.
Related Topics

Create New File Handle

Close File Handle

Get/Set File Attributes

The filesystem doesn't make a difference if the file was not found or the path.
The return value in both error cases is 2.

Top of list
Index page

Interrupt 0x21 service Ox3E: Close File Handle
Closes an open file.
Parameters

AH
Ox3E

BX
File handle

Return Value

Success: Carry flag cleared
Failure: Carry flag set, AX = error code:
AX=6: file not open

Related Topics

Create New File Handle
Open Existing File

Top of list
Index page

Interrupt O0x21 service Ox3F: Read from File

Reads a number of bytes from a file, the handle of which is specified in BX.

Parameters
AH
Ox3F
BX
File handle
CX

Number of bytes to read

DS:DX
Pointer to the destination data buffer.

Return Value

Success: Carry flag cleared, AX = number of bytes read into buffer from file
Failure: Carry flag set, AX = error code:

AX=5: Access denied

AX=6: Invalid file handle

Related Topics
Create New File Handle

Open Existing File
Write to File

Set Current File Position

Top of list
Index page

Interrupt O0x21 service 0x40: Write to File

Writes a number of bytes to a file, the handle of which is specified in BX.

Parameters
AH
0x40
BX
File handle
CX

Number of bytes to write

DS:DX
Pointer to the source data buffer.

Return Value

Success: Carry flag cleared, AX = number of bytes written into the file
Failure: Carry flag set, AX = error code:

AX=5: Access denied

AX=6: Invalid file handle

Comments

Requesting zero bytes written to file (CX=0) truncates the file at the current position.
Related Topics

Create New File Handle

Open Existing File

Read from File
Set Current File Position

Top of list
Index page

Interrupt 0x21 service 0x41: Delete File

Deletes a file. Wildcards are not allowed.

Parameters

AH
0x41

DS:DX
Pointer to null terminated file name and path.

Return Value

Success: Carry flag is cleared

Failure: Carry flag is set, AX holds error code:
AX=2: File not found
AX=5: Access denied

Related Topics

Create New File Handle
Get/Set File Attributes

Top of list
Index page

Interrupt Ox21 service 0x42: Set Current File Position

The operating system maintains a 32 bit file pointer that it uses for read or write requests to the
respective file. This service can be used to either read or set this file pointer. The file pointer
associated with handle is set to a new byte position offset relative to the origin of the move.

Parameters
AH

0x42
AL

Origin of move
0x00: Relative to start of file
0x01: Relative to current position
0x02: Relative to end of file

BX
File handle

CX,DX
Offset of the displacement with higher order word in CX.

Return Value

Success: Carry flag is cleared, DX,AX holds the new position relative to the start of the file with high word
in DX.
Failure: Carry flag is set, AX holds error code:

AX = 0x06: Invalid handle

AX = 0x19: Invalid displacement

Comments

If you attempt to seek beyond the end of file, the file pointer will be positioned at the end of the file.

To read current file position without changing it, call with AL=1, CX:DX = 0:0.

Related Topics

Read from File
Write to File

Top of list
Index page

Interrupt O0x21 service 0x43: Get/Set File Attributes

Use this function to inspect or change the attributes of a file.

Parameters
AH
0x43
AL
0: get, 1: set
CX

File attributes (bit field):
BO - Read Only
B1 - Hidden File
B2 - System File
B5 - Archive Flag

DS:DX
Pointer to a null terminated string holding the file path.

Return Value

Success: Carry flag cleared, file attributes in CX (bit field):
... same flag bits as CX input parameter with additional bits ...

B3 - Volume
B4 - Directory Entry

Failure: Carry flag set, AX holds error code:
AX=1: Invalid function (wrong value in AL)
AX=2: File not found
AX=5: Access denied

Comments
Input parameter CX is not used when input parameter AL = 0.
Related Topics

Delete File

Top of list
Index page

Interrupt 0x21 service 0x44: IOCTL, Set/Get Device Information

Changes the data that DOS uses to control a device.

Parameters
AH

0x44
AL

0: Get device data, 1: Set device data

BX
Handle

DX
Device data

Return Value

Success: Carry flag cleared, Device data in DX.

Failure: Carry flag set, AX holds error code
AX=1: Invalid function (wrong value in AL)
AX=6: Invalid handle

Comments

If bit 7 of the data is 1, the handle refers to a device and data bit assignments are as follows:
Bi t Meani ng when bit is set to "1
B15 Reserved

B14 Devi ce can handl e function 0x44, codes 2 and 3
B13 Devi ce supports output until busy
B12 Reser ved

B11l Devi ce under st ands open/cl ose

B10-8 Reserved

B7 Set to '1" to indicate handle refers to a device.
B6 Not "end of file" on input

B5 Don't check for control characters

B4 Reserved

B3 Cl ock device

B2 Nul | device

Bl Consol e Qut put device

BO Consol e | nput device

If bit 7 of the data is 0, the handle refers to a file and data bit assignments are as follows:
Bi t Meani ng
B15-8 Reserved
B7 Set to '0" to indicate handle refers to a file.
B6 Set to '0" when the file has been witten
BO-5 Drive nunber (0=A, 1=B, etc)

The first 3 file handles are used for the st di o devices:

0: Input

1: Output

2: Error
This service was implemented to be compatible with the older DOS compilers. The data is saved when
you issue a write, but the data is not used by DOS. Control characters are not recognized as such.
Function 0x44 codes 2 and 3 are not supported.

Top of list
Index page

Interrupt Ox21 service 0x47: Get Current Working Directory
Get current working directory for a drive.
Parameters

AH
0ox47

DS:SI
Pointer to a 64 byte memory area to receive null terminated path of current working directory (cwd).

DL
Drive number, O for current, 1 for A, ..

Return Value

Success: Carry flag cleared, Buffer at [DS:Sl] contains cwd path.
Failure: Carry flag set, error code in AX=15

Comments

Each task has it's own current working directory. When a program starts, its current drive and working
directory will be set to the drive and directory that was current before the program started.

Related Topics

Set current working directory

Top of list
Index page

Interrupt 0x21 service 0x48: Allocate Memory

Allocate memory for the process

Parameters
AH

0x48
BX

Size counted in paragraphs
Return Value

Success: Carry flag cleared, AX holds the segment of the memory area
Failure: Carry flag set due to not enough memory available, AX = 0,
BX holds the size of the largest free block available expressed by paragraph count.

Comments
A paragraph is 16 bytes in length.
Related Topics

Free allocated memory
Resize memory

Top of list
Index page

Interrupt 0x21 service 0x49: Free Allocated Memory

Release allocated memory

Parameters
AH

0x49
ES

Segment of the memory area as returned by function 0x48

Return Value

Success: Carry flag cleared
Failure: Carry flag set, AX holds the error code =9.

Related Topics

Allocate memory
Resize memory

Top of list
Index page

Interrupt Ox21 service 0x4A: Resize Memory

Increase or decrease the size of a memory allocation block

Parameters
AH

Ox4A
BX

Desired new size expressed in paragraphs

ES
Segment address of memory block

Return Value

Success: Carry flag cleared
Failure: Carry flag set due to not enough memory available and the size of the largest free block is
returned in BX (paragraph count).

Comments

A paragraph is 16 bytes in length The call failed, if a user tries at his application to increase a memory

block, allocated with int21h 0x48. In that case it only possible to decrease the size of the allocated
memory block.

Related Topics

Allocate memory
Free memory

Top of list
Index page

Interrupt O0x21 service 0x4B: EXEC

Load and/or execute a program. This function loads the program and builds its PSP (Program Segment
Prefix) based on a parameter block that you provide.

Parameters
AH
0x4B
AL
Type of load:

00h - Load and execute
01h - Load but do not execute

DS:DX
Null terminated program name (must include extension)

ES:BX
parameter block
Ofset Size Descri ption
00h WORD Segnent of environnment to copy for child process

(copy caller's environment if 0000h)
02h DWORD Pointer to command tail to be copied into child s PSP
06h DWORD Pointer to first FCB to be copied into child s PSP
OAh DWORD Pointer to second FCB to be copied into child' s PSP
OEh DWORD (AL=01h) will hold subprograms initial SS:SP on return
12h DWORD (AL=01h) will hold entry point (CS:1P) on return

Return Value

Success: Carry flag cleared, AX=task ID,
BX= segment of PSP, add sizeof PSP/16 for relocation offset.
(If sub function 01h used, the task is waiting for it's trigger.)
Failure: Carry flag set, AX =1

Comments

Use sub function 0x00 to load and execute another program.

Subfunction 0x01 is used to load a program without executing it. This option is used by debuggers.

For both functions, the calling process must ensure that there is enough unallocated memory available; if
necessary, by releasing memory with services AH=0x49 or AH=0x4A .

Developer Notes

This function (int 0x21, function 0x4B) is still under development.

Top of list
Index page

Interrupt Ox21 service 0x4C: End Process
Terminates a process
Parameters

AH
0x4C

Comments

The memory used by the process is released, with following exception. This function will not free system
memory allocated by a task that was created within a program. Only memory allocated by the

program's main task will be freed here.

Top of list
Index page

Interrupt O0x21 service Ox4E: Find First File

Find first file matching file name specification and attribute. The results are stored in the Disk Transfer

Area (DTA).
Parameters
AH

Ox4E
CX

File attribute

DS:DX
Null terminated file specification (may include path and wildcards)

Return Value

Success: Carry flag cleared, search results are in DTA
Failure: Carry flag set

Comments

The main task of your application has a standard pointer to a Disk Transfer Area of the program. This
DTA address should be set with interrupt 0x21 function Ox1A before calling this f i ndf i r st function.

The findfirst /findnext sequence is handled by your compiler library so the Disk Transfer Area is
therefore not described here.

Tasks created with the RTOS API inside of your application use a DTA from an internal list. A task
which gets access to the file system reserves an entry in this list.

Only ten DTA entries for user tasks are available.

Related Topics

Find next file
RTOS RTX ACCESS FILESYSTEM Service

Top of list
Index page

Interrupt 0x21 service Ox4F: Find Next File

Finds the next file in the fi ndfi rst/fi ndnext sequence. The results are stored in the Disk Transfer
Area (DTA).
The task that calls the f i ndnext must be the same task that called the f i ndfirst .

Parameters

AH
Ox4F

Return Value

Success: Carry flag cleared, search results are in DTA
Failure: Carry flag set

Comments

Since the entire state of afi ndfi rst/fi ndnext sequence is held in the DTA data block, other disk
operations such as renaming, moving, deleting, or creating files can cause inaccurate directory searches

such as finding the same file twice. Please look at the findfirst function (Interrupt Ox21, function Ox4E)

for other restrictions.
Important restriction:
Findnext must be called in a loop until it failed.(until the last file is found)

Related Topics

Find first file

Top of list
Index page

Interrupt 0x21 service 0x50: Debugger Support

Get address of internal program task list and set callback vector used for program startup notification.

Parameters

AH
0x50

DX:BX
Callback vector

CX
Sanity Check = 0x8765

Return Value

DX:BX contains pointer to internal task list.
AX = Task list length = 12

CX = size of task list elements

S| = RTOS Private Data Segment

Comments

This function is intended only for debugger usage.

Top of list
Index page

Interrupt 0x21 service 0x51: Get PSP Segment Address

Get PSP (Program Segment Prefix) segment address

Parameters

AH
0x51

Return Value
BX contains the PSP segment address, if BX=0, PSP was not found
Comments

This function is identical to interrupt Ox21 service 0x62 .

Top of list
Index page

Interrupt 0x21 service 0x56: Change Directory Entry, Rename File

Rename a file by changing its directory entry

Parameters

AH
0x56

DS:DX
Pointer to null terminated old file name

ES:DI
Pointer to null terminated new file name

Return Value

Success: Carry flag cleared
Failure: Carry flag set, AX holds error code
AX: 1 - File not found
AX: 4 - File new file name already exists
AX: 5 - Internal error
AX: 7 - Directory update failed

Top of list
Index page

Interrupt 0x21 service 0x57: Get/Set File Date and Time

Get or set file date and time. The file is specified by file handle.

Parameters
AH

0Ox57
AL

AL=0 to get the date and time of the last modification.
AL=1 to set the file date and time.

BX

File handle
CX

if AL==1: Time in the format described below
DX

if AL==1: Date in the format described below
Return Value

Success: Carry flag cleared, if input parameter AL=0 then:
CX = time of last modification
DX = date of last modification

Failure: Carry flag set

Comments

The time/date registers are coded as follows:
CX time of last modification
bits 15-11: hours (0..23)
bits 10-5: m nut es
bits 4-0: seconds/ 2

DX date of last modification
bits 15-9: year - 1980
bits 8-5: nmont h
bits 4-0: day

Related Topics

Create New File Handle
Open Existing File

Top of list
Index page

Interrupt 0x21 service 0x58: Get/Set memory strategy (dummy function)

Get/Set memory strategy, only a dummy function for compatibility

Parameters
AH

0x58
AL

AL=0 Get strategy
AL=1 Set strategy.

BX
(Al=1) Strategy O: First fit, 1: Best fit, 2: Last fit

Return Value

If parameter Al==0 (get strategy) AX contains as a dummy value the memory strategy, Carry flag cleared
If parameter Al==1 (set strategy) AX contains always the parameter given at BX. If BX contains a value
bigger 2, carry flag is set and AX == 1.

Comments

This is only a dummy function, added for compatibility. The @Chip-RTOS has its own memory strategy.
The @Chip-RTOS memory always allocates memory in the following way:

DOS programs are always loaded at the first lowest free memory block of the @Chip-RTOS memory
area. For memory blocks allocated inside of the @Chip-RTOS or e.g. with Int21h 0x48 the @Chip-RTOS
always start searching for a free memory block from the highest possible RAM address. So the largest

free memory block of the system is always located in the middle of the @Chip-RTOS memory area.The
shell command mem shows the state of the internal memory map.

Top of list
Index page

Interrupt 0x21 service 0x62: Get PSP Segment Address
Get PSP (Program Segment Prefix) segment address
Parameters

AH
0x62

Return Value

BX contains the PSP segment address, if BX=0, PSP was not found

Comments

This function is identical to interrupt 0x21 service 0x51 .

Top of list
Index page

Interrupt 0x21 service 0x63: Get Leading Byte (stub)
Dummy function, not supported by the SC12 BIOS
Parameters

AH
0x63

Return Value

Always returns with Carry flag set
AL = OxFF
DS=0
SI=0

Top of list
Index page

Interrupt 0x21 service 0x68: Flush DOS Buffers to Disk

Flush DOS file buffers to disk for specified file.

Parameters
AH

0x68
BX

file handle

Return Value

Success: Carry flag cleared

Failure: Carry flag set, AX holds error code
AX : 2 Invalid handle
AX : 7 1/O error occurred

Top of list
Index page

End of document

BELCK

Beck IPC GabH

DOS API Updates - BIOS V1.02 Beta

IPC@Chip Documentation Index

DOS API News

The following extensions to the DOS API are available in the indicated BIOS revisions.

New in version 1.02b: Get/Set memory strategy (dummy function)

New in version 1.01b: Bugfix at Get Disk Free Space

New in version 1.00: Add stdin channel return value (see documentation)

New in version 1.00: Modified: Read from stdin, add stdin channel return value

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

External Disk Interface - BIOS V1.02 Beta

IPC@Chip Documentation Index

External Disk Drive

Here is the interface definition for an external disk B: drive . This interface allows you to add an external B:
drive. This drive must be block (sector) oriented. Each sector should be 512 bytes long. The application must
provide a software interrupt OxB1 function to read and write these sectors on this drive.

Maximum disk size is about 2 Gigabytes.

. Interrupt 0xBO function Ox01: Install External Disk
Interrupt 0xBO function 0x02: Deinstall External Disk

Interrupt OxBO service 0x01: Install External Disk

This function will logically install a B: drive.
Prior to this call the application must provide a disk read/write function installed at interrupt 0xB1. This

installed handler function should expect:

AX 1 for wite, 0 for read.

BX, DX Unsi gned | ong (BX hol ds high word) of sector nunber
CX Nunber of sectors to read/wite

ES: DI Segnent: O fset of nenory area to read/wite

The handler should return 0 in AX if OK.

Parameters

AH
0x01

BX,DX
An unsigned long with the total number of sectors. BX holds high word.

Return Value

AXis 0 if OK.

http://www.bcl.de/

Top of list
Index page

Interrupt OxBO service 0x02: Deinstall External Disk
Used to deinstall drive B: which was installed before with function 0x01 (above).
Parameters

AH
0x02

Return Value

AX =0 success
AX =0 failed (may be drive was not installed?)

Top of list
Index page

End of document

BELCK

Beck IPC GabH

Ethernet Packet Driver Interface - BIOS V1.02 Beta

IPC@Chip Documentation Index

Ethernet: Packet Driver Interface
Packet driver interface definition for direct access to the SC12 Ethernet device

The SC12 BIOS uses interrupt OXAE with a service number in the high order byte of the AX register (AH) to
access the IPC@Chip Ethernet packet driver. All supported services are listed here.

New in version 1.02B: GET_RCV_MODE, Get recv mode of the ethernet device

New in version 1.02B: SET_RCV_MODE, Set receive mode of IPC@Chip ethernet device
New in version 1.02B: SET_MULTICAST, Set/add ethernet multicast address

New in version 1.02B: DET_MULTICAST, remove ethernet multicast address

New in version 1.02B: INSTALL WILDCARD, Install Access wildcard handler

. Interrupt OXAE function 0x01: DRIVER INFO, Get Driver Information
. Interrupt OXAE function 0x02: ACCESS TYPE, Install Access Handler
. Interrupt OXAE function 0x03: RELEASE TYPE, Unload an Access Handler
Interrupt OXAE_function_0x04: SEND PKT, Send an Ethernet Packet
. Interrupt OXAE function 0x06: GET_ADDRESS, Get the SC12 Ethernet Address
. Interrupt OXAE function 0x14: SET RCV_MODE, Set receive mode of IPC@Chip ethernet device
. Interrupt OXAE function 0x15: GET RCV_MODE, Get recv mode of the ethernet device
. Interrupt OXAE function 0x16: SET MULTICAST, Set Ethernet multicast address
Interrupt OXAE_function_0x27: DEL_MULTICAST, Remove ethernet multicast address
Interrupt OXAE_function_0x28: INSTALL WILDCARD, Install access wildcard access handler

On return the CPU carry flag is set if an error has occurred. The DH register holds an error code:

0x00 NO_ERROR

0x01 BAD HANDLE /1l invalid handl e nunber

0x05 BAD TYPE /| Bad packet type specified

0x09 NO_SPACE /'l operation failed because of insufficient space
0x0A TYPE_| NUSE /'l the type had previously been accessed and not

rel eased

0x0B BAD_COMVAND /'l the command was out of range, or not inplenented

0x0C CANT_SEND /'l the packet couldn't be sent (usually a hardware

http://www.bcl.de/

error)

Important:

The implemented services are only a small subset of the packet driver interface definition. One important
difference is that the software interrupt OXAE does not have the typical PKTDRVR signature at offset 3 in
the interrupt source code. So instead of looking for this signature, use BIOS interrupt OxAO function0x16

to check if the packet driver interface is available in the IPC@Chip BIOS. The maximum number of
installed packet handlers is five.

Examples for the usage of the packet interface:

PonNPE

PKTDRV.C: C-Source for the API calls

PKTDRV.H: Defines, typedefs, prototypes, ... for the API calls

REC.ASM : Assembler example for a receiver handler function, installed with function ACCESS_TYPE
SEND.EXE and RCV.EXE (with source): Simple program pair for sending and receiving of Ethernet
packets

Interrupt OXAE service 0x01: DRIVER_INFO, Get Driver Information

Added only for compatibility

Parameters

AH

0x01

Return Value

Carry flag: 0, Success:

AL: 1, Basic functions present

BX: 0x0B, Version

CH: 0x01, Class

CL: 0x00, Number

DL: 0x36, Type

DH: 0x00, Error code = NO_ERROR

DS:Sl : Pointer to the null terminated driver name string, "SC12PKT"

Top of list
Index page

Interrupt OXAE service 0x02: ACCESS_TYPE, Install Access Handler

Parameters

AH

0x02

AL
class, from DRIVER_INFO call

CX
type length, must be 2!!

DL
number, from DRIVER_INFO call

DS:SI
Pointer to the desired packet type, e.g. 0x800 for IP
(The object pointed to here must be persistant, not a momentary value.)

ES:DI
Vector to user's receiver handler function for this packet type

Return Value

Carry flag: 0 Success, AX contains the handle number (needed for RELEASE_TYPE call)
Carry flag :1 Failure, DH contains error code

Comments

We support the following Ethernet V2.0 frame format:
48 Bits (6 Bytes) Destination address
48 Bits (6 Bytes) Source address
16 Bits (2 Bytes) Type field e.g 0x0608 for ARP, 0x0008 for IP or user defined types
46 to 1500 Bytes of user data.

The maximum number of installed handlers is limited to five. In all BIOS versions except the TINY
version, setting of ARP or IP handlers is not allowed here.

When an Ethernet packet of the type specified here at [DS:Sl] is received by the the SC12's network
device driver, this driver will perform callbacks to the receiver handler function specified here in ES:DI.
This callback will be done twice:

o First call:
Input parameters to your handler: AX = 0, CX = received packet length
Return Value from your handler: ES:DI - Pointer to buffer where driver can load the CX
received bytes.
n Second call:
Input parameters to your handler: AX = 1, data ready in your buffer now
Return Value from your handler: -- none --
On the first call, your handler produces a buffer into which the driver can transfer the received packet.
This byte transfer occurs between the two calls to your handler function.
Important: Because of our Little Endian processor you must exchange the Bytes for the
packet type e.g. use 0x0008 for the IP type instead of 0x0800.

Top of list

Index page

Interrupt OXAE service 0x03: RELEASE_TYPE, Unload an Access Handler

The user installed Ethernet packet type access handler is removed.

Parameters
AH

0x03
BX

Handle from ACCESS_TYPE call 0x02

Return Value

Carry: 0, AX:0, DX:0: success
Carry: 1, DH contains error code

Top of list
Index page

Interrupt OXAE service 0x04: SEND_PKT, Send an Ethernet Packet

Send bytes in provided packet buffer over Ethernet.

Parameters
AH

0x04
CX

Length of packet

DS:SI
Pointer to packet buffer

Return Value

Carry flag:0, AX:0, DX:0: success
Carry flag:1, DH contains error code

Top of list
Index page

Interrupt OXAE service 0x06: GET_ADDRESS, Get the SC12 Ethernet Address

Parameters

AH
0x06

ES:DI
Pointer to user buffer (6 bytes), for storing the Ethernet address

Return Value

Carry flag:0, AX:0, DX:0: success
Location at [ES:DI] contains the six bytes of the Ethernet address.

Top of list
Index page

Interrupt OXAE service 0x14: SET_RCV_MODE, Set receive mode of IPC@Chip ethernet
device

Parameters
AH

0x14
CX

Receive mode
3: Receiving packets mit own ethernet address and broadcasts

Return Value

Carry flag:0, AX:0, DX:0: success
Carry flag:1, AX:-1;DX:-1 Bad parameter at CX

Comments

Default receive mode is 3.
Receive mode 6 should only be used at the SC12 Tiny version (@Chip-RTOS without the TCPIP stack).
Calling SET_MULTICAST overrides the current mode with mode 5.

API call Get receive mode returns the current mode.

Developer Notes

This mode is still under development, please contact us at our internet newsgroup or direct by email, if you have
guestions,problems or suggestions.

Top of list
Index page

Interrupt OXAE service 0x15: GET_RCV_MODE, Get recv mode of the ethernet device
Parameters

AH
0x15

Return Value

Carry flag:0, AX:3 accept any packet with own adresss or broadcast address
AX:5 accept any packet with own adresss, broadcast address or multicast addresses
Carry flag:1, DH contains error code

Top of list
Index page

Interrupt OXAE service 0x16: SET_MULTICAST, Set Ethernet multicast address
Parameters

AH
0x16

ES:DI
Pointer to multicast mac address buffer 6 bytes

CX
length of ES:DI buffer, must be 6

Return Value

Carry flag:0, AX:0, DX:0: success
Carry flag:1, DH contains error code

Developer Notes

The adress will be installed inside the ethernet device of the IPC@Chip. Max. 64 addresses could installed.

Top of list
Index page

Interrupt OXAE service 0x27: DEL_MULTICAST, Remove ethernet multicast address
Parameters

AH
0x27

ES:DI
Pointer to multicast mac address buffer 6 bytes

CX
length of ES:DI buffer, must be 6

Return Value

Carry flag:0, AX:0, DX:0: success
Carry flag:1, DH contains error code

Top of list
Index page

Interrupt OXAE service 0x28: INSTALL_WILDCARD, Install access wildcard access handler

Installing a wildcard packettype access handler.
Any incoming ethernet packet will be accepted, if one or more bits of the packettype matches to the bits
of the installed wildcard packettype.

Parameters
AH

0x28
AL

class, from DRIVER_INFO call

CX
type length, must be 2!!

DL
number, from DRIVER_INFO call

DS:SI

Pointer to the desired packet type, e.g. OXFFFF for accepting any incoming ethernet packet
(The object pointed to here must be persistant, not a momentary value.)

ES:DI
Vector to user's receiver handler function for this packet type

Return Value

Carry flag: 0 Success, AX contains the handle number call)
Carry flag :1 Failure, DH contains error code

Comments

Only one wildcard could be installed. Installing a new type overwrites the previous.
If a packettype of OXFFFF is installed, any incoming packet will be accepted.
Delete a wild card handle by installing a wildcard with the packet type 0x0000.
"Normal" handlers installed with call are not overwritten by installing a wildcard

Top of list
Index page

End of document

BELCK

Beck IPC GabH

TFTP server - BIOS V1.02 Beta

IPC@Chip Documentation Index

Introduction

Here is a short description of the SC12 TFTP server.

The TFTP server is available starting with BIOS version SC12V0100 and allows only sending

and receiving of files to a remote TFTP client.

A SC12 BIOS version with TFTP could be used as a simple alternative to FTP. TFTP doesn't provide
extended filesystem features like listing directories or deleting files. If the user don't need

the extendend features of the FTP server, it could be useful to use a SC12 BIOS with TFTP instead
of FTP. This saves 13 KByte of flash memory.

The TFTP server is not a part of our current official 6 BIOS versions. You must order direct a BIOS
version, which includes this feature.

By default the server listens at the standard TFTP port 69 for incoming TFTP client requests.
The TFTP port could configure an own port number at chip.ini.

. See TFTP configuration Set TETP port number

The server is able to serve one client at one time. Only the binary (octet) transfer mode
is supported. The size of TFTP data packets must be 512 Bytes. By default TFTP file
transfers are not allowed, for avoiding a security leak. You can enable/disable TFTP
with the command TFTP 0/1.

. See TFTP command Enable/Disable TETP : Allow/Disallow the usage of TFTP

Comments

It is also possible to execute this command inside of an user application with
See Execute a shell command

End of document

http://www.bcl.de/

BELCK

Beck IPC GabH

Security notes - BIOS V1.02 Beta

IPC@Chip Documentation Index

Introduction

Here some notes how to protect the IPC@Chip against unauthorized access.
By default most of the further described security features are disabled.

This to enable every starting user to have access to them from the start

for his IPC@Chip development.

WEB server

TELNET server

FTP server

PPP server

Chiptool UDP config server
TFETP server

General Security

WEB server

Steps to protect the IPC@Chip against unauthorized access via HTTP:

e\ e

Top of list
Index page

Webserver default drive : Set a webserver root drive at chip.ini

Webserver root directory : Set a webserver root directory at chip.ini

Remove CGI page ChipCiqg : Delete this preconfigured page from the CGIl table with the CGI API
PUT Method User and Password : Define User and Password if you have a BIOS Variant which

provides the HTTP PUT method. Otherwise everyone can transfer files to your server with the
standard password and user 'WEB'. The HTTP PUT method wont be provided by the standard
BIOS Variants LARGE, MEDIUM, SMALL, TINY.

TELNET server

http://www.bcl.de/

Steps to protect the IPC@Chip against unauthorized access via Telnet:

Telnet timeout minutes : Define telnet idle timeout minutes at chip.ini

Telnet login delay : Enable telnet login delay at chip.ini

Telnet login retries : Set telnet login retries at chip.ini

Telnet user and passwords : Define both user and password names at chip.ini

Set the Stdio Focuskey to zero : at chip.ini or inside of the application with Set Stdio focus key
This disables the switching of stdio.

ok wnhPE

Comments

Since BIOS version 1.01B telnet doesn't tell if the input of the username or the password input was
wrong.

Top of list
Index page

FTP server

Steps to protect the IPC@Chip against unauthorized access via FTP:

FTP timeout : Define FTP idle timeout seconds at chip.ini

FTP login delay : Enable FTP login delay at chip.ini

FTP user and passwords : You should define both user and password names at chip.ini

FTP user root directory : For a "normal” user you should define a root directory above "\".

FTP user drive : If you specify a rootdirectory you also must set a drive.

Hide files with int21h 0x43 : Hidden files are not visible at FTP sessions or by the DIR command

o0k wnNPE

Comments

Since BIOS version 1.01B FTP doesn't tell if the username input or the password input was wrong.

Top of list
Index page

PPP server

Steps to protect the IPC@Chip against unauthorized access via PPP:

1. PPP server idle timeout : Define PPP server idle timeout seconds at chip.ini
2. PPP users and passwords : Define both user and password names for the the PPP server at
chip.ini

Top of list
Index page

Chiptool UDP config server

Protect the IPC@Chip against unauthorized access by using the Chiptool program:

1. UDP config server : Set the UDP config server security level at chip.ini

Top of list
Index page

TFTP server

Protect the IPC@Chip against unauthorized access via TFTP:

1. Disable/enable TFTP : Disable/enable TFTP with shell command

Top of list
Index page

General Security

1. Install System Server Connection Handlers gives the possibility to generate IP- and/or Port -

filters and forbid connections to FTP, WEB or Telnet
2. With the BIOS Ints Api call Suspend System Servers you can Supend/Resume the FTP, Web

and Telnet Server while runtime.

Top of list
Index page

End of document

BELCK

Beck IPC GabH

Programming notes - BIOS V1.02 Beta

IPC@Chip Documentation Index

Introduction

Here are some useful notes for programming applications for the IPC@Chip.
These notes contains some general rules for programming DOS applications for the IPC@CHIP and
should prevent the programmers from fatal errors.

o Common notes for building IPC@Chip user applications

o Using RTOS API

o Programming CGI functions

o Configure the FTP server

o Usage of the TCPIP API

o General notes for the usage of the DOS and BIOS int API calls
o Using Hardware API

o Using Fossil API

o Working with Float Data Types

o Configure PPP client or server

Common notes for building IPC@Chip user applications

1. Compiler option settings:
We recommend the usage of large memory model for user applications
The compiler must produce 186 processor instruction code
The data alignment must be set to 8 Bit (Byte alignment), not to 16-Bit (Word alignment)!

2. No "execption handling" at Borland C 4.x or 5.x projects:
Users of Borland C-Compilers (which provides "execption handling libraries" e.g. it's the default
setting at 4.5 or 5.02) should choose for their program project "No exceptions" at the "Target
Expert" window. This saves Flash and RAM memory space.

3. Turbo Pascal programmers should include the example file SC12. | NC (part of each IPC@Chip
Pascal example program). At the start of their program, they should install the procedure
Ter m nat e_Pr ogr amas the default exit procedure of the program. Usage of the standard uni t
crt is not allowed.

http://www.bcl.de/

4. Before starting the first Turbo Pascal program at the IPC@Chip the memopt 1 command must be
executed (e.g. in the autoexec.bat)

5. If programs that depend on one another are started from a batch file (e.g. if a user program needs
a previous driver program) the Batchmode 1 in chip.ini should be set.

6. The CLIB library API calls are using the standard int86 and int86x calls e.g. from the Borland C
standard libs. We used these functions for more readable code. If developers need higher
performance in their applications, it will be better to implement often used API calls with inline
assembler code. With inline assembler instructions it is possible to load the processor registers
directly with the needed parameters and directly invoke the appropriate software interrupt i nt
xxh .

7. For some reasons it is not advisable to design an IPC@Chip application as a set of several DOS
programs:
1. It is more meaningful to run several tasks (builded with the RTOS API) inside of one DOS
program because this requires much less RAM and Flash memory space, than running several
DOS programs as tasks of the @chip-RTOS.
2. It could lead to high memory fragmentation and insufficient memory, if more than one or two
DOS programs are running at the IPC@Chip, which will be often terminated and restarted again.

8. Most of the used pointer variables and function parameters at the CLIB library C files are not
declared as FAR pointer, because all of our testprograms are using the memory model Large (at
model Large all pointers become automatically FAR pointers). If you want to use e.g. memory
model Small for your application you must rewrite the CLIB source files by declaring all pointer
variables and function parameters explicit as FAR pointers.

9. Itis not advisable to use the Borlandc-CLIB call malloc at memory model Large inside of your
application. In that case the DOS program tries to increase its own memory block with int21h
Ox4A. If another program is loaded after that program the malloc call failed, because there is no
memory space left between the two programs. It is possible to define a memory gap between two
loaded programs at chip.ini but then you must know how max. memory is required at your malloc

calls. It is better to reserve inside of your application the memory by declaring an unsigned char
array (or the type you require) with the neede memory size.

10. The @Chip-RTOS has its own memory strategy.
The @Chip-RTOS memory always allocates memory in the followingway:
DOS programs are always loaded at the first lowest free memory block. For memory blocks
allocated inside of the @Chip-RTOS or e.g. with DOS service 0x48 the @Chip-RTOS always
start searching for a free memory block from the highest possible RAM address. So the largest

free memory block of the system is always located in the middle of the @Chip-RTOS memory
area. The shell command mem shows the state of the internal memory map.

Top of list
Index page

Using RTOS API

1. Timer procedures must be implemented as short as possible, because they are executed in the
Kernel task. Large timer procedures are blocking the kernel and other tasks of the @Chip-RTOS.
Do not use large Clib functions like printf inside of a timer procedure. This could cause a fatal
stack overflow in the kernel task (stack size 1024 Bytes)

10.

Declaring of timer procedures with Borland C:
voi d huge ny_timer(void)

Microsoft C:
void far _saveregs _|oadds ny_timer(void)

Turbo Pascal:
procedure Tinmerl Proc;interrupt;
begi n

[... your code ...]

(**)

(* This is needed at the end of the Tiner Proc. *)
asm
POP BP
POP ES
POP DS
POP DI
POP SI
POP DX
POP CX
POP BX
POP AX
RETF
end;

(**)

end;

DOS applications are running as a task of the @CHIP-RTOS with a default priority of 25. If the
users application doesn't go to sleep , lower priority tasks like the FTP server or the webserver

will not work. In major loops within user applications, the programmer should insert sleep calls if
the FTP server or webserver should work during the runtime of the user application.

The stack of a task created inside of a DOS application should have a minimum stack size of

1024 Bytes. Programmers of task functions who are using Microsoft C-Compilers with C-Library
functions, e.g. spri nt f , which requires a lot of stack space should increase this allocation to
6144 (6 Kbytes). More stack space for the task is also required if your task function uses a large
amount of stack for automatic data (local variables) declared inside the task function call.

Declaring of task functions with Borland C:
voi d huge ny_task(void)

Declaring of task functions with Microsoft C:
void far _saveregs _|oadds mny_task(void)

Before exiting an application, every task or timer procedure created inside of this application
program must be removed.

A sleep call with parameter 1 millisecond takes equal or less than one millisecond. If a user
needs a minimal sleep time of 1 millisecond then RTX_SLEEP_TIME must be called with value 2
milliseconds.

Top of list
Index page

Programming CGI functions

10.

Top of list
Index page

Avoid large loops inside of CGI functions. CGI functions must be executed
as fast as possible. Large execution times in CGI functions block
the webserver task preventing response to other http requests.

Declaring of CGlI functions with Borland C:
voi d huge ny_cgi _func(rpCgi Ptr Cgi Request)

Declaring of CGI functions with Microsoft C:
void far _saveregs _|oadds ny_cgi func(rpCgi Ptr Cgi Request)

Declaring of CGI functions with Borland Turbo Pascal:
procedure ny_cgi _func;interrupt;

Turbo Pascal users must install their CGI functions with API call Install CGIl Pascal function

C-Programmers must use Install CGI function

Avoid the declaration of large arrays as local variables inside
of the CGI function to prevent stack overflows

Users of Microsoft C should set Webserver stacksize in chip.ini up to 6144 KBytes,
to prevent stack overflows, if Microsoft CLib functions like sprintf are used.

Dynamic html or text pages, which are created inside of a user CGlI function should be as small
as possible. The webserver inside must allocate a tempbuffer for storing this page before sending
it to the browser. If your application builds large dynamic html page in RAM, your application
should not use all available memory in the IPC@Chip because the webserver will need some
memory for allocating tempbuffers for this page. How much memory should be left: This depends
on the application and the sizes of the created dynamic html or CGI pages.

Before exiting an application, every CGI function installed by the application must be removed
with Remove CGI page

Configure the FTP server

1.

Top of list
Index page

The default FTP idletimeout is set to 300 seconds. This is a very long time for waiting, if FTP
commands fail. The idletimeout can be reduced in chip.ini.

Usage of the TCPIP API

Top of list

Index page

1. Processing of a socket callback functions (see Register callback) should be kept at a minimum

to prevent stack overflows.

. Declaring of socket callback functions with Borland C:

voi d huge ny_cal | back(int socketdescriptor, int eventflagmask)

. Declaring of socket callback functions with Microsoft C:

void far _saveregs _I|oadds ny_call back(int sd, int eventmsk)

. The internal TCPIP stack of the IPC@Chip allocates memory for buffers smaller than 4096 bytes

from a preallocated memory block. Larger buffers are allocated direct from the Chip-RTOS. If user
TCPIP network communication sends/receives packets with a size larger than 4096 bytes, the
user application should not use all available memory in the IPC@Chip, because of these
additional allocations. There should be in that case always a minimum of 30-40 KBytes of free
available memory at the IPC@Chip. The mem command shows the whole memory list of the

IPC@Chip at runtime. The maximum amount of TCPIP memory could be configured in chip.ini
(see Set TCPIP memory size). The application programmer could reduce or increase this size in

chip.ini. With the API call Get TCPIP memory info it is possible to control the TCPIP memory
usage at the application runtime.

General notes for the usage of the DOS and BIOS int API calls

. At the start of a user program the Stdio focus should be set to USER. Before ending the

application switch the focus back to SHELL or BOTH (see Set Stdio focus).

. If more than one user program runs in the IPC@Chip, only one of them should read characters

from Stdin

. The functionality of most of the shell commands is also available through calls into the BIOS Int

API . If not, use the BIOS int call Execute a shell command . This call executes a shell
command from inside the user application.

. Install a fatal user error handler, which does a reboot of the IPC@Chip with Install user fatal

error handler

. Used software interrupts (all others are free for use):

0x00 - Reserved (BIOS Divide Overflow Handler)

0x01 - Reserved (Debugger Trace Interrupt)

0x02 - Reserved (Hardware Non-Maskable Interrupt (NMI))
0x03 - Reserved (Debugger Breakpoint Interrupt)

0x04 - Reserved (BIOS INTO Overflow Handler)

0x05 - Reserved (BIOS Array Bounds Exception Handler)
0x06 - Reserved (BIOS Invalid Opcode Exception Handler)
0x07 - Reserved (BIOS ESC Opcode Exception Handler)
0x08 - Reserved (Hardware, Timer #0 Handler)

OxO0A - Reserved (Hardware, DMA #0 / INT5 Handler)
0x0B - Reserved (Hardware, DMA #1 / INT6 Handler)
0x0C - Reserved (Hardware, INTO Handler)

0x0D - Reserved (Hardware, INT1 Ethernet Handler)
OXO0E - Reserved (Hardware, INT2 Handler)

OxOF - Reserved (Hardware, INT3 Handler)

0x10 - Biosint

Ox11 - Biosint

0x12 - Reserved (Hardware, Timer #1 Handler)

0x13 - Reserved (Hardware, Timer #2 Handler)
0x14 - Fossil Interface

0x16 - Biosint

Ox1A - Biosint

0x1C - Timer Interrupt, see Set timer 1C interval

0x20 - Terminate Program (Only for compatibility, instead use DOS service 0x4C)
0x21 - DOSEmu Interrupt Interface

OxAO0 - Several 'chip’ related services

OxAl - Hardware API (HAL)

OxA2 - Hardware API (PFE)

OxXAA - 12C Interface

OXAB - CGl Interface

OxAC - TCP/IP API

OXAD - RTOS API

OXAE - Ethernet Packet Driver

OxAF - Timer Interrupt, see Set timer AF interval

0xBO - External Disk API

0xB1 - External Disk Driver

OxBF - This vector is reserved to start a DOS executable

If you are using a BIOS variant in which some modules are not included, then the interrupts
corresponding to these modules are free for use.

6. External hardware interrupts are enabled (STI opcode) during execution of the following API
software interrupts:
DCS ints 0x10, Ox14(Fossil), 0x16, 0x20, 0x21, BICS int OxAO, Cd int
OxAB, 12C int OxAA, Cd int OxAB, TCPIP int OXAC, RTOS int OxAD Pkt int
OxAE, Extdisk int 0xBO, Extdisk user int O0xBl

Top of list
Index page

Using Hardware API

Top of list
Index page

. The HAL functions keep interrupts disabled, so you can call them inside an interrupt routine. The

PFE functions are only for choosing and initializing a specific function on the selected pin. They
should be called once in your application for initializing your hardware environment and not at
runtime or inside interrupt routines.

. Do not use functions of the RTOS API inside of a user isr installed with Install ISR

. The latency time of the user ISR (from generation of an interrupt until first line of code inside the

user ISR) is about 65 ps.

. Instead of HAL functions Read data bus and Write data bus you can call C-functions i nportb

and out por t b from DOS.H for faster data bus accesses.

Using Fossil API

Top of list
Index page

. The receive and send gqueue size can be configured over the CHIP.INI.

. If you want external DMA, you have to disable the serial DMA mode. Otherwise the DMA mode

is recommended.

. Since BIOS 1.02B XON/XOFF mode is available, if the serial DMA mode is set.

Please note: Because of the internal functionality of DMA it is not possible to detect an XON or
XOFF character from the connected peer immediately. It is possible that an overrun situation at
the peer (e.g. GSM modem) could occur. Nevertheless we enable this mode because some GSM
modems (any??) supports only XON/XOFF as serial flow control mechanism.

. The default serial recv queue size is 1024 Byte. If the default DMA receive mode is used, it is

advised to increase the recv queue size at Chip.ini up to a minimum value of 2048 Bytes to

prevent a possible buffer overrun (even if hard handshake is used). This could only happen with
the default queue size of 1024 Bytes, if the user doesn't call the Fossil APl readblock function

fast enough. If the application programmer will not increase this buffer size up to the
recommended value, he should call the Fossil APl readblock function with the highest possible

size at the CX-Register for flushing the internal buffers and preventing an receive buffer overrun

. For a given serial port the fossil functions are not reentrant. Do not call fossil functions for the

same serial port from different tasks. However for different serial ports, the fossil functions are
reentrant. E.g. task A can operate the COM port using fossil functions concurrently with task B
operating the EXT port using the same fossil functions.

Working with Float Data Types

Top of list

Index page

1. The IPC@CHIP does not provide a floating point co-processor. So if you want to use floating

point data types you need to enable the math-emulation in your compiler. In Borland C++ 5.02
see the option "Emulation” under the Target Expert's (right mouse click on your Exe-file in your
project) "Math Support".

. If you want to use float data types in tasks other than your main (DOS) task, you have to reinit the

floating point emulation. Using the Borland C++ 5.02 compiler you do that with the command
" fpreset(void)" (available in float.h). Do that in your task procedure before using floating point
data types.

Configure PPP client or server

Top of list

Index page

. Connected modems should be configured in chip.ini with the modem command ATEO INITCMD .

This prevents the modem from echoing characters to the peer in command mode. The COM and
the serial ports of the IPC@Chip SC12 have only 4 lines (TXD/RxD/CTS/RTS) and no line for
detecting a hang-up of the modem. Because of this fact we provided the Idletimeout and the

MODEMCTRL configuration features in chip.ini or in the PPP client init struct type . But the

idletimeout and modemctrl detection could fail if a modem has switched its echo mode on. If the
peer modem hangs up without correctly closing a PPP session, the IPC@chip modem also hangs
up and goes into the command mode. Because of the missing line for detecting a modem hang-
up, the PPP server doesn't know anything about the broken connection and still sends PPP
frames to the modem. It could happen that the modem echoes these characters back to the
IPC@Chip due to being in "Echo on" mode. This will cause the idletimeout to not work.

. We recommend that the PPP server or client and the connected modems should run (if possible)

with RTS/CTS flow control (see chip.ini flow control mode or in the PPP client init struct type).
Most modems use RTS/CTS flow control, if they get the AT command AT\Q3.

. The COM and EXT port of the SC12 has only CTS, RTS, RxD and TxD lines,

S0 you have to configure your modem with DTR always on.
(e.g. AT cmd for a most modem types: AT&DO0)

End of document

	www.bcl.de
	IPC@Chip Documentation index - BIOS V1.02 Beta
	IPC@Chip Documentation - @CHIP-RTOS Software overview
	IPC@Chip Documentation - Scalable BIOS Versions of the IPC@Chip
	IPC@Chip Initialization - BIOS V1.02 Beta
	BIOS Interface Documentation - BIOS V1.02 Beta
	CHIP.INI Documentation - BIOS V1.02 Beta
	CHIP.INI Updates - BIOS V1.02 Beta
	Command Processor - BIOS V1.02 Beta
	TCP/IP Application Programmer's Interface - BIOS V1.02 Beta
	TCP/IP API Updates - BIOS V1.02 Beta
	TCP/IP Error Codes - BIOS V1.02 Beta
	TCP/IP Application Developers Note - BIOS V1.02 Beta
	Data Structures used in TCP/IP API - BIOS V1.02 Beta
	Programming client server applications - BIOS V1.02 Beta
	RTOS API - BIOS V1.02 Beta
	Web server CGI interface - BIOS V1.02 Beta
	CGI API Updates - BIOS V1.02 Beta
	Web Server Overview - BIOS V1.02 Beta
	CGI File Types - BIOS V1.02 Beta
	CGI Error Codes - BIOS V1.02 Beta
	CGI Application Developers Note - BIOS V1.02 Beta
	CGI Examples Available - BIOS V1.02 Beta
	Data Structures used in CGI API - BIOS V1.02 Beta
	RTOS API Updates - BIOS V1.02 Beta
	RTOS Overview - BIOS V1.02 Beta
	RTOS Error Codes - BIOS V1.02 Beta
	RTOS Application Developers Note - BIOS V1.02 Beta
	RTOS Examples Available - BIOS V1.02 Beta
	Data Structures used in RTOS API - BIOS V1.02 Beta
	RTOS Tasks - BIOS V1.02 Beta
	Hardware API - BIOS V1.02 Beta
	Hardware API Updates - BIOS V1.02 Beta
	Hardware API Layers - BIOS V1.02 Beta
	I2C Bus Interface - BIOS V1.02 Beta
	Fossil API - BIOS V1.02 Beta
	PPP Interface - BIOS V1.02 Beta
	I2C Bus API Updates - BIOS V1.02 Beta
	DOS Interface Documentation - BIOS V1.02 Beta
	DOS API Updates - BIOS V1.02 Beta
	External Disk Interface - BIOS V1.02 Beta
	Ethernet Packet Driver Interface - BIOS V1.02 Beta
	TFTP server - BIOS V1.02 Beta
	Security notes - BIOS V1.02 Beta
	Programming notes - BIOS V1.02 Beta

