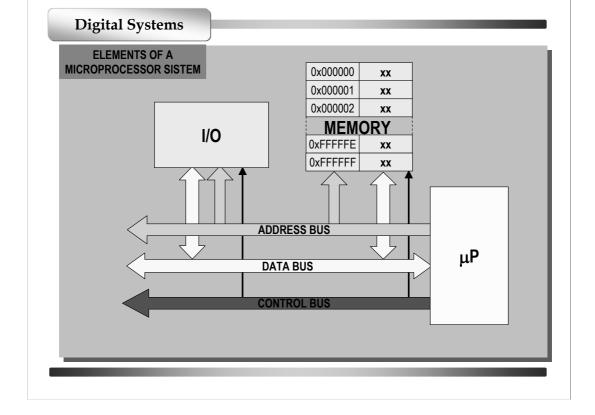

Chapter 1 General Concepts

In an lectronic system we find different components:

- 1. Elements interfacing with physical world: Sensors and actuators
- 2. Elements transforming physical magnitudes (analog and continuous) into digital (discrete) : $\underline{A/D}$ and $\underline{D/A}$ converters
- 3. Elements that control the system and process variables: <u>Microprocessors and configurable logic elements</u>
- 4. Elements in charge of storing programs and variables: Memory


In a Microprocessor structure we have:

- 1. Subsystem implementing the state machine: Control unit
- 2. Local storage elements:

Dedicated registers (IR, PC i SR)

General purpose registers (R1...Rn)

- 3. Arithmetic-Logic unit: <u>ALU</u>
- 4. Interconnection elements: <u>Busses</u>

Microprocessador comunicates with external elements by means of three Sub-Busses

1. ADDRESS BUS.

Defines the address space accessible by the microprocessor. Every accessible element has to be within that space.

2. DATA BUS.

These lines are used to move data elements (instructions and operands) between the microprocessor and external elements.

3. CONTROL BUS.

Contains all the timing, synchronization and control signals.

Two kind of external elements:

1. MEMORY

Contains all the information (program and data) relative to the application(s) running in the system.

2. I/O

Implements the interface between the microprocessor and the physical world (periferals)

INSTRUCTION PHASES

- 1. Fetch instruction code (R)
- 2. Instruction Decoding (I)
- 3. Operand(s) fetch (R)
- 4. Operate (I)
- 5. Result write-back (W)

Instruction phases:

1. Fetch instruction code

PC > ADDRESS BUS.

DATA BUS > IR

One or more READ machine cycles

2. Instruction decoding

CONTROL UNIT decyphers instruction code.

Internal OPERATION

3. Read operand(s)

PC or Rx > ADDRESS BUS

DATA BUS > Rx

One or more READ machine cycles

4. Operate

iNTERNAL OPERATION (ALU)

5. Result(s) Write-back

PC or Rx > ADDRESS BUS

Rx > DATA BUS

One or more WRITE machine cycles

MICROPROCESSOR MODELS

× SOFTWARE

× REGISTER SET

× ADDRESSING MODES

× INSTRUCTION SET

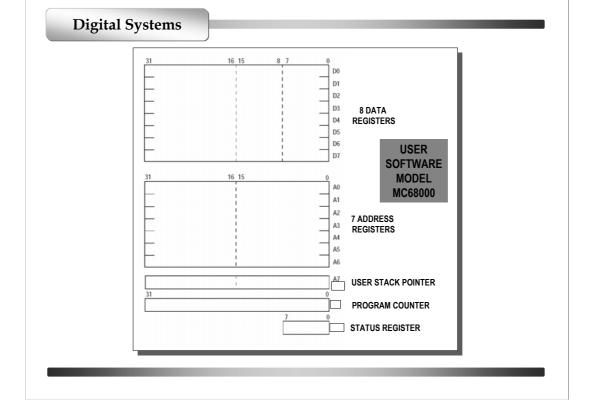
× HARDWARE

× AVAILABLE SIGNALS

× MACHINE CYCLES

To use a microprocessor in a given applicartion we don't need to know its detailed. A symplified MODEL will suffice:

For application programming: SOFTWARE MODEL


REGISTER Set: Where can we (temporary) store our objects? INSTRUCTION Set: What can we do with different objects?

ADDRESSING Modes: How can we have access to different objects?

To build the system: HARDWARE MODEL

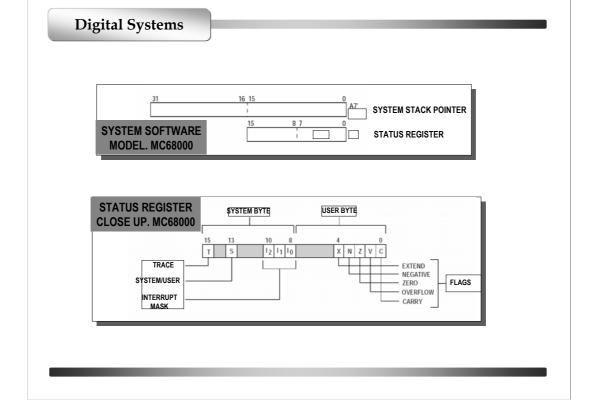
SIGNALS available: What signals can we connect?

MACHINE CYCLES: What is the temporal relationship between different signals? All that information is made available by manufacturer through operation manuals.

MC68000 (Motorola, Philips...)

8 ADDRESS REGISTERS (pointers)

8 DATA REGISTERS (general purpose)


1 PC (Instruction address)

1 SR (Operation FLAGS)

Of the 8 address registers, A7 és the STACK POINTER of user data structures, and some instructions make an IMPLICIT reference to it (PEA, LINK, UNLK...)

Any <ea> (EFFECTIVE ADRESS) using a REGISTER has to use an ADDRESS REGISTER

The SR (Status register) contains the FLAGS corresponding to the last OPERATION in the ALU. However, they can be used or modified at any time.

In SUPERVISOR MODE, apart from user registers we have:

A second STACK POINTER

A CONTROL REGISTER

μP ADDRESSING MODES

1. IMPLICIT

Operand implicit in I.C.

2. IMMEDIATE

Operand included in I.C.

3. ABSOLUTE

Address included in I.C.

4. DIRECT

Operand in a Register

5. INDIRECT

Address in a Register

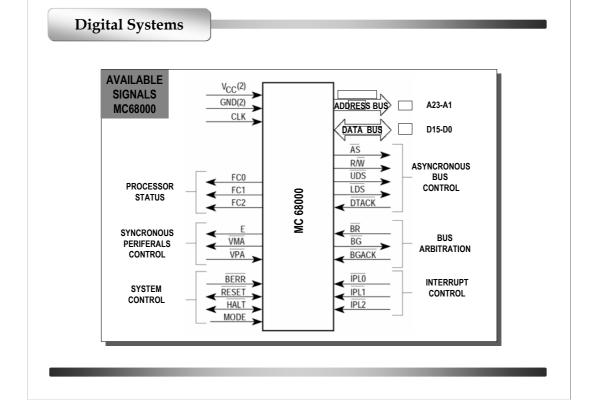
6. RELATIVE

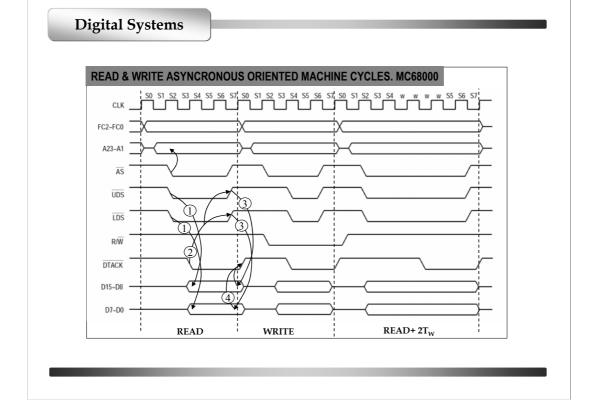
Address as the sum of:

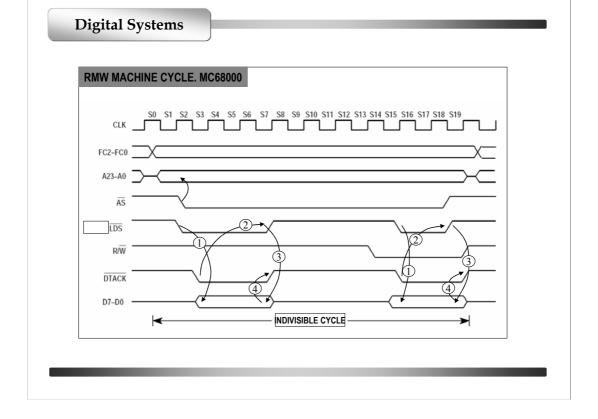
- **★**A register and an offset
- **★**Two registrers and an offset

ADDRESSING MODES. MC68000		
Mode	Generation	Syntax
Register Direct Addressing Data Register Direct Address Register Direct	EA=Dn EA=An	Dn An
Absolute Data Addressing Absolute Short Absolute Long	EA = (Next Word) EA = (Next Two Words)	(xxx).W (xxx).L
Program Counter Relative Addressing Relative with Offset Relative with Index and Offset	EA = (PC)+d ₁₆ EA = (PC)+d ₈	(d ₁₆ ,PC) (d ₈ ,PC,Xn)
Register Indirect Addressing Register Indirect Postincrement Register Indirect Predecrement Register Indirect Register Indirect with Offset Indexed Register Indirect with Offset	EA = (An) EA = (An), An \((An) (An)+ -(An) (d16.An) (d8,An,Xn)
Immediate Data Addressing Immediate Quick Immediate	DATA = Next Word(s) Inherent Data	# <data></data>
Implied Addressing□ Implied Register	EA = SR. USP. SSP. PC.	SR,USP,SSP,PC,
EA = Effective Address PC = Program Counter Dn = Data Register An = Address Register (1) = Contents of Contents of PC = Program Counter (1) = PC = P		User Stack Pointer

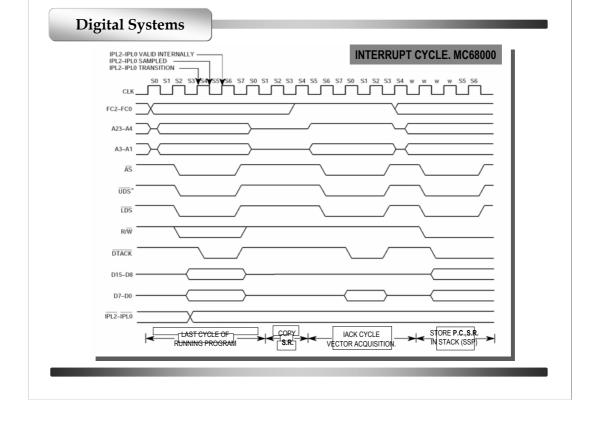
See MC68000 PROGRAMMER'S REFERENCE MANUAL:

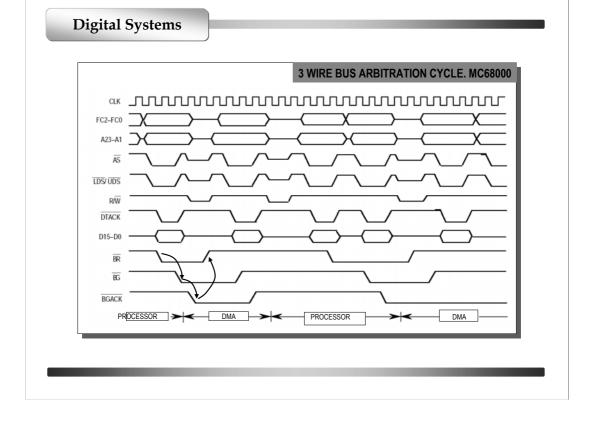

2.2 EFFECTIVE ADRESSING MODES


nstruction	Operand Syntax	Operand Size	Operation
EXG	Rn, Rn	32	$Rn \leftarrow \rightarrow Rn$
FMOVE	FPm,FPn <ea>,FPn FPm,<ea> <ea>,FPcr FPcr,<ea></ea></ea></ea></ea>	X B, W, L, S, D, X, P B, W, L, S, D, X, P 32 32	Source → Destination
FSMOVE, FDMOVE	FPm,FPn <ea>,FPn</ea>	X B, W, L, S, D, X	Source \rightarrow Destination; round destination to single or double precision.
FMOVEM	<ea>,<list>¹ <ea>,Dn <list>¹,<ea> Dn,<ea></ea></ea></list></ea></list></ea>	32, X X 32, X X	Listed Registers → Destination Source → Listed Registers
LEA	<ea>,An</ea>	32	<ea> → An</ea>
LINK	An,# <d></d>	16, 32	$SP - 4 \rightarrow SP$; $An \rightarrow (SP)$; $SP \rightarrow An$, $SP + D \rightarrow SP$
MOVE MOVE16 MOVEA	<ea>,<ea> <ea>,<ea> <ea>,An</ea></ea></ea></ea></ea>	8, 16, 32 16 bytes 16, 32 → 32	Source → Destination Aligned 16-Byte Block → Destination
MOVEM	list, <ea> <ea>,list</ea></ea>	16, 32 16, 32 → 32	Listed Registers → Destination Source → Listed Registers
MOVEP	Dn, (d ₁₆ ,An) (d ₁₆ ,An),Dn	16, 32	$\begin{array}{l} \text{Dn } 31\text{-}24 \rightarrow (\text{An + d}_n); \text{ Dn } 23\text{-}16 \rightarrow (\text{An + d}_n + 2); \\ \text{Dn } 15\text{-}8 \rightarrow (\text{An + d}_n + 4); \text{ Dn } 7\text{-}0 \rightarrow (\text{An + d}_n + 6) \\ (\text{An + d}_n) \rightarrow \text{Dn } 31\text{-}24; (\text{An + d}_n + 2) \rightarrow \text{Dn } 23\text{-}16; \\ (\text{An + d}_n + 4) \rightarrow \text{Dn } 15\text{-}8; (\text{An + d}_n + 6) \rightarrow \text{Dn } 7\text{-}0 \end{array}$
MOVEQ	# <data>,Dn</data>	8 → 32	Immediate Data → Destination
PEA	<ea></ea>	32	$SP-4 \rightarrow SP$; $\leq ea \geq \rightarrow (SP)$
UNLK	An	32	$An \rightarrow SP$; $(SP) \rightarrow An$; $SP + 4 \rightarrow SP$


Instruction	Operand Syntax	Operand Size	Operation	
ADD	Dn, <ea> <ea>,Dn</ea></ea>	8, 16, 32 8, 16, 32	Source + Destination → Destination	
ADDA	<ea>,An</ea>	16, 32		
ADDI ADDQ	# <data>,<ea> #<data>,<ea></ea></data></ea></data>	8, 16, 32 8, 16, 32	Immediate Data + Destination → Destination	
ADDX	Dn,Dn -(An), -(An)	8, 16, 32 8, 16, 32	Source + Destination + X → Destination	
CLR	<ea></ea>	8, 16, 32	0 → Destination	
CMP CMPA	<ea>,Dn <ea>,An</ea></ea>	8, 16, 32 16, 32	Destination – Source	
CMPI	# <data>,<ea></ea></data>	8, 16, 32	Destination - Immediate Data	
CMPM	(An)+,(An)+	8, 16, 32	Destination - Source	
CMP2	<ea>,Rn</ea>	8, 16, 32	Lower Bound → Rn → Upper Bound	
DIVS/DIVU	<ea>,Dn <ea>,Dr-Dq <ea>,Dq <ea>,Dr-Dq</ea></ea></ea></ea>	$32 + 16 \rightarrow 16,16$ $64 + 32 \rightarrow 32,32$ $32 + 32 \rightarrow 32$ $32 + 32 \rightarrow 32,32$	(Signed or Unsigned Quotient, Remainder)	
EXT EXTB	Dn Dn Dn	8 → 16 16 → 32 8 → 32	Sign-Extended Destination \rightarrow Destination	
MULS/MULU	<ea>,Dn <ea>,Dl <ea>,Dh–Dl</ea></ea></ea>	16 x 16 → 32 32 x 32 → 32 32 x 32 → 64	Source x Destination → Destination (Signed or Unsigned)	
NEG	<ea></ea>	8, 16, 32	0 – Destination → Destination	
NEGX	<ea></ea>	8, 16, 32	0 – Destination – X → Destination	
SUB	<ea>,Dn Dn,<ea></ea></ea>	8, 16, 32 8, 16, 32	Destination = Source → Destination	
SUBA	<ea>,An</ea>	16, 32		
SUBI SUBQ	# <data>,<ea> #<data>,<ea></ea></data></ea></data>	8, 16, 32 8, 16, 32	Destination – Immediate Data → Destination	
SUBX	Dn,Dn -(An), -(An)	8, 16, 32 8, 16, 32	Destination – Source – X → Destination	

nstruction	Operand Syntax	x Operand S		ize	Operation	
AND	<ea>,Dn</ea>		8, 16, 32		So	urce Λ Destination → Destination
	Dn, <ea></ea>		8, 16, 32			
ANDI	# <data>,<ea></ea></data>		8, 16, 32		Immediate Data ∧ Destination → Destination	
EOR	Dn, <ea></ea>		8, 16, 32		Source ⊕ Destination → Destination	
EORI	# <data>,<ea></ea></data>		8, 16, 32		Immediate Data ⊕ Destination → Destination	
NOT	<ea></ea>		8, 16, 32	:	~ Destination → Destination	
OR	<ea>,Dn Dn,<ea></ea></ea>		8, 16, 32		So	urce V Destination → Destination
ORI	# <data>,<ea></ea></data>		8, 16, 32		lm	mediate Data V Destination \rightarrow Destination
Instruction	Operand Synta	x Operan		d Size	9	Operation
BCHG	Dn, <ea> #<data>,<ea></ea></data></ea>	8, 3				~ (<bit number=""> of Destination) \rightarrow Z \rightarrow Bit of Destination</bit>
BCLR	Dn, <ea> #<data>,<ea></ea></data></ea>		8, 32 8, 32			\sim (<bit number=""> of Destination) \rightarrow Z; $0 \rightarrow$ Bit of Destination</bit>
BSET	Dn, <ea> #<data>,<ea></ea></data></ea>		8, 32 8, 32			\sim (<bit number=""> of Destination) \rightarrow Z; 1 \rightarrow Bit of Destination</bit>
BTST	Dn, <ea> #<data>,<ea></ea></data></ea>	8, 3 8, 3				~ (<bit number=""> of Destination) $\to Z$</bit>
Instruction	Operand Syntax	Operand Size				Operation
ABCD	Dn,Dn -(An), -(An)	8		Sourc	e ₁₀	+ Destination $_{10}$ + X \rightarrow Destination
NBCD	<ea></ea>	8		0 – De	esti	nation ₁₀ – X → Destination
PACK	-(An), -(An) # <data> Dn,Dn,#<data></data></data>			Unpackaged Source + Immediate Data → Packed Destination		
SBCD	Dn,Dn -(An), -(An)	8		Destin	atio	on _{10 −} Source _{10 −} X → Destination
UNPK	-(An),-(An) # <data></data>	8 → 16 Unpa		Packe	d S	Source → Unpacked Source
	Dn,Dn,# <data></data>					d Source + Immediate Data → ed Destination


nstruction	Operand Synta:	Operand Size	Operation		
		Integer and Floating	ng-Point Conditional		
Bcc, FBcc	<label></label>	8, 16, 32	If Condition True, Then PC + d _n → PC		
DBcc, FDBcc	Dn, <label></label>	16	If Condition False, Then $Dn-1 \to Dn$ If $Dn \to -1$, Then $PC + d_n \to PC$		
Scc, FScc	<ea></ea>	8	If Condition True, Then 1's → Destination; Else 0's → Destination		
		Uncor	nditional		
BRA	<label></label>	8, 16, 32	$PC + d_n \rightarrow PC$		
BSR	<label></label>	8, 16, 32	$SP - 4 \rightarrow SP$; $PC \rightarrow (SP)$; $PC + d_n \rightarrow PC$		
JMP	<ea></ea>	none	Destination → PC		
JSR	<ea></ea>	none	$SP - 4 \rightarrow SP$; $PC \rightarrow (SP)$; Destination $\rightarrow PC$		
NOP	none	none	PC + 2 → PC (Integer Pipeline Synchronized)		
FNOP	none	none	PC + 4 → PC (FPU Pipeline Synchronized)		
		Re	turns		
RTD	# <data></data>	16	$(SP) \rightarrow PC$; $SP + 4 + d_n \rightarrow SP$		
RTR	none	none	$(SP) \rightarrow CCR; SP + 2 \rightarrow SP; (SP) \rightarrow PC; SP + 4 \rightarrow SR$		
RTS	none	none	$(SP) \rightarrow PC; SP + 4 \rightarrow SP$		
			and Scc specify testing one of the following conditions:		
CC—Carry clear GE—Greater than or equal		qual			
LS—Lower or same PL—Plus		PL—Plus			
CS—Carry set GT—Greater than		GT—Greater than			
LT—Less than T—Always true*		T—Always true*			
EQ—Equal HI—Higher		HI—Higher			
MI—Minus VC—Overflow clear		/C—Overflow clear			
F—Never true* LE—Less than or equal		LE—Less than or equa	ıl		
NE—Not ec		VS—Overflow set			
	o the Bcc instruction				



Digital Systems MEMORY DATA BIT DATA 1 BYTE = 8 BITS **ORGANIZATION** MC68000 INTEGER DATA 1 BYTE = 8 BITS 1 LONG WORD = 2 WORDS = 4 BYTES = 32 BITS L BYTE 0 BYTE 0 HIGH-ORDER WORD BYTE 1 LONG WORD 0 ADDRESSES BYTE 2 BYTE 2 LOW-ORDER _ WORD BYTE 3 BYTE 3 BYTE 0 1 WORD = 2 BYTES = 16 BITS HIGH-ORDER . WORD BYTE 1 BYTE 0 (MS BYTE) LONG WORD 1 BYTE 1 (LS BYTE) BYTE 2 LOW-ORDER BYTE 3 BYTE 0 (MS BYTE) Н WORD 1 -BYTE 1 (LS BYTE)

