Master of Science in Information and Communication Technologies

VLSI Digital Design Spring-06 Term

Course Objectives

- To introduce the IC design process.
- To identify the designs that require integrated solutions.
- To identify the constraints imposed by digital VLSI implementations.
 - Synchronous design
 - Electric aspects
 - High-performance circuits
 - Fundamental subsystems
 - Test techniques
- To use proper design styles for VLSI.
- To design using high-level hardware description languages (HDLs).
 - Simulation and validation tools.
 - Synthesis tools.

Assessment

<u>Theory</u>: **50 %**

- •EX: Proposed exercises 5 %
- •PR: Design project 15 %
- •ME: Mid-term exam: 10 %
- •FE: Final exam : 20 %

Lab assignments: 50 % •LV: Lab VHDL exam 2.5 %

- •LW: Lab work 35 %
- •LE: Lab exam: 12.5 %

To pass, all the following requirements are necessary: $\bullet FE \ge 3$ or weighted FE and ME ≥ 3 $\bullet Theory \ grade \ge 4$ $\bullet Lab \ grade \ge 4$

Theory syllabus (1/2)

I. Introduction (2 weeks)

- 1.1. Technologies for digital design
- 1.2. Integration capability and future trends
- 1.3. Design Techniques
- 1.4. State of the art
- 1.5. Synchronous design review
 - 1.5.1. Non-recommended digital design techniques
 - 1.5.2. Synchronous flip-flops
 - 1.5.3. Building synchronous systems

II. CMOS Logic Design (3 weeks)

- 2.1. Switching characteristics review
- 2.2. Delay, logical effort and buffering
- 2.3. Logic structures
- 2.4. Clock strategies

III. Physical Design Issues (2 weeks)

- 3.1 Low-power design
- 3.2 Power-supply and clock distribution

Theory syllabus (2/2)

IV. Arithmetic and Logic Subsystem Design (3 weeks)

- 4.1 Algorithmic systems and structured design
- 4.2 Datapath operators: adders
- 4.3 Datapath operators: multipliers
- 4.4 Other operators

V. Test Techniques (2 weeks)

- 5.1 Introduction.
- 5.2 Manufacturing test principles.
- 5.3 Design for test.
- 5.4 Self-test.
- 5.5 System-level test

Lab Syllabus

LAB Objective: Description, Simulation and Synthesis with VHDL

0. Introduction to the development environments	
ModelSim, Precision and Xilinx ISE	(1 week)
1. Practical Aspects of Synchronous Digital Design	(2 weeks)
2. Arithmetic-Logic Unit (ALU)	(2 weeks)
3. Timer Design	(2 weeks)
4. AMBA Bus	(2 weeks)
5. Register Bank	(1 week)
6. Functional verification and application	(2 weeks)
7. Placement and routing of an integrated circuit	(1 week)

References

BASIC

- Digital Integrated Circuits. A Design Perspective Jan M. Rabaey Prentice-Hall, 2003 (2a ed.)
- •The Designer's Guide to VHDL Peter J. Ashenden Morgan Kaufmann Publishers, 2002 (2a ed.)

COMPLEMENTARY

- Designing ASICS (Module 1) P. Naish, P.Bishop Ellis Horwood, 1988
- Computer Arithmetic Systems (Module 4) A. R. Omondi Prentice-Hall, 1994
- CMOS VLSI Design : A Circuits and Systems Perspective (Modules 2, 4, 5)

N.E. Weste, D. Harris Addison-Wesley, 2004 (3a. edició)

- Low Power Digital CMOS Design (Module 3) Chandrakasan A.P., Brodersen R.W. Kluwer Academic Publishers, 1998
- Essentials of Electronic Testing (Module 5) Bushnell. M.L.; Agrawal, V.D. Kluwer Academic Publishers, 2000
- Digital Systems Engineering Dally, W.J.; Poulton, J.W. Cambridge University Press, 1998
- Surviving the SOC Revolution A Guide to Platform-Based Design Chang H. et al. Kluwer Academic Publishers, 1999