
VLSI Digital Design

LAB ASSIGNMENT 1

Practical aspects of synchronous digital
design

Practical aspects of synchronous digital design 1

0. Objectives

This laboratory work is intended to bring to light some problems that turn up when
unsuitable design techniques are used. After illustrating cases of defective designs
several necessary modifications are proposed to be carried out to correct the problems
that arise.

The final goal of the lab assignment is that the student adopts a completely synchronous
design methodology that avoids an important number of situations as the previously
shown ones while simplifying system debugging. In general, asynchronous designs will
be avoided, except in very well characterized and delimited situations (for example,
asynchronous communication interfaces).

1. Work specification

In general, when designing digital systems of certain complexity, all the sequential
elements of the system are switched by means of a single active edge of a unique clock
signal. The clock is distributed throughout the circuit with the minimal delays and
trying to equalize the instant when it attains all the circuit flip-flops, in order to
minimize skew.

In this lab assignment, simple circuits are used to show some of the problems and
undesired effects that asynchronous designs can produce. These problems become
worse with the increase of design complexity.

1.1. 1, 3, 5 detector

Three VHDL descriptions of a subsystem, that has to detect codes 1, 3 and 5 from the 4-
bit counter output and send them to a 7-segment decoder, are provided. The decoder
output is connected to a led display that shows the current code.

Each code version, prac1_1a.vhd, prac1_1b.vhd and prac1_1c.vhd is provided in the
annex. Notice that all the three versions use a frequency divider of the mclk clock,
which operates at 50 MHz.

Tasks to be carried out:

• Analyze carefully each code version, trying to find out eventual problems of
operation.

• Synthesize the descriptions and observe the resulting elements. Indicate whether
they are the expected ones or not.

• Simulate the post-synthesis descriptions with delays. Are the results correct?
Why?
Important note: To speed up the simulation time, reduce the number of bits of
the frequency divider, changing cntClk to the range 28 downto 23. Modify the
necessary sentences and synthesize the new version.

• Make a new description prac1_1d.vhd that avoids the former designs’ problems.
Synthesize and simulate it

Practical aspects of synchronous digital design 2

Optional task:

• File main_prac1_1.vhd allows incorporating any of the former entities as a
component. To check real-time operation, the synthesized and compiled file can
be uploaded to the lab Xilinx evaluation board. It is necessary to introduce,
together with the EDIF file generated by the synthesizer, the pin configuration
UCF constraints file that will be provided in the lab, substituting the one
eventually obtained from the synthesis process.
In order to be able to observe operation with a visible time scale, it is necessary
to restore the signal cntClk range to 28 downto 0.

1.2. Modulo-16 counter

Second part of this lab consists in showing an operation fault that may arise in
asynchronous designs due to glitches.

In the file asinc_count16.vhd design, a system which pretends to accumulate for 16
times a four-bit number defined by the user by means of four external switches. This
modulo-16 accumulation is performed periodically every 3 seconds, approximately.
Thus, if the number to accumulate is set to 1, and the accumulator is initially reset to 0,
after 16 accumulations by 1, the final result remains to 0. This also happens for any
other number to accumulate, regardless its value, the final accumulator value after 16
accumulations should remain to 0.

The file asinc_count16.vhd design, listed in the annex, uses as a component an enabled
T flip-flop (file etff.vhd), that is instantiated 27 times to divide the 50 MHz mclk clock
signal. The AND function of stages 22 and 27 attempts to generate a stream of 16 clock
pulses to control the accumulation process.

Tasks to carry out:

• Carefully analyze the asinc_count16.vhd description, trying to find out potential
problems.

• Synthesize the description. Simulate the description with delays. Are the results
correct? Why? Important note. Like in section 1.1, speed up the time
simulation cutting the number of frequency dividing stages, changing the cntClk
range to 27 downto 21 and modifying the necessary sentences and synthesizing
the new version.

• Create a new description file sinc_count16.vhd that avoids the problems of the
former designs. Synthesize it and simulate it.

Optional task:

• The file main_prac1_2.vhd incorporates the former entity as a component. This
file, after being synthesized and compiled can be uploaded to the Xilinx
evaluation board to check real-time operation. It is necessary to introduce,
together with the EDIF file generated by the synthesizer, the pin configuration
UCF constraints file that will be provided in the lab, substituting the one
eventually obtained from the synthesis process.

Practical aspects of synchronous digital design 3

 In order to be able to observe operation with a visible time scale, it is necessary
to restore the signal cntClk range to 27 downto 0.

2. Annex

VHDL code for section 1.1

prac1_1a.vhd

--
-- 1, 3, 5 detector
-- Version 1a
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity prac1_1a is
 Port (mclk : in std_logic;
 sb_btn : in std_logic;
 cntClk : out std_logic_vector(28 downto 0);
 Ssegcnt : out std_logic_vector(3 downto 0));
end prac1_1a;

architecture behavioral of prac1_1a is

--
-- Signal Declarations
--

 signal cntClk_aux : std_logic_vector(28 downto 0);
 signal enable: std_logic;

--
-- Module Implementation - DIO5 tests
--

begin

 -- Divide the clock to produce various timing signals
 process (mclk, sb_btn)
 begin
 if (sb_btn = '1') then cntClk_aux <= "00000000000000000000000000000";

 elsif mclk = '1' and mclk'Event then
 cntClk_aux <= cntClk_aux + 1;
 end if;
 end process;

 enable <= '1' when (cntClk_aux(28 downto 25)="0001" or cntClk_aux(28 downto
25)="0011" or cntClk_aux(28 downto 25)="0101")
 else enable;

Practical aspects of synchronous digital design 4

 process
 begin
 wait until(enable'event and enable='1');
 if (sb_btn = '1') then
 Ssegcnt <= (others => '0');
 else
 Ssegcnt <= cntClk_aux(28 downto 25); -- DIO4 Sseg display digit
 end if;
 end process;

 cntClk <= cntClk_aux;

end behavioral;

prac1_1b.vhd

--
-- 1, 3, 5 detector
-- Version 1b
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity prac1_1b is
 Port (mclk : in std_logic;
 sb_btn : in std_logic;
 cntClk : out std_logic_vector(28 downto 0);
 Ssegcnt : out std_logic_vector(3 downto 0));
end prac1_1b;

architecture behavioral of prac1_1b is

--
-- Signal Declarations
--

 signal cntClk_aux : std_logic_vector(28 downto 0);
 signal enable: std_logic;

--
-- Module Implementation - DIO5 tests
--

begin

 -- Divide the clock to produce various timing signals
 process (mclk, sb_btn)
 begin
 if (sb_btn = '1') then cntClk_aux <= "00000000000000000000000000000";

 elsif mclk = '1' and mclk'Event then
 cntClk_aux <= cntClk_aux + 1;
 end if;
 end process;

process(cntClk_aux, sb_btn)

Practical aspects of synchronous digital design 5

 begin
 if (sb_btn = '1') then
 enable <= '0';
 elsif (cntClk_aux(28 downto 25)="0001" or cntClk_aux(28 downto 25)="0011" or
cntClk_aux(28 downto 25)="0101") then
 enable <= '1';
 end if;
 end process;

process
 begin
 wait until(enable'event and enable='1');
 if (sb_btn = '1') then
 Ssegcnt <= (others => '0');
 else
 Ssegcnt <= cntClk_aux(28 downto 25); -- DIO4 Sseg display digit
 end if;
 end process;

 cntClk <= cntClk_aux;

end behavioral;

prac1_1c.vhd

--
-- 1, 3, 5 detector
-- Version 1c
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity prac1_1c is
 Port (mclk : in std_logic;
 sb_btn : in std_logic;
 cntClk : out std_logic_vector(28 downto 0);
 Ssegcnt : out std_logic_vector(3 downto 0));
end prac1_1c;

architecture behavioral of prac1_1c is

--
-- Signal Declarations
--

 signal cntClk_aux : std_logic_vector(28 downto 0);
 signal enable: std_logic;

--
-- Module Implementation - DIO5 tests
--

begin

 -- Divide the clock to produce various timing signals
 process (mclk, sb_btn)
 begin

Practical aspects of synchronous digital design 6

 if (sb_btn = '1') then cntClk_aux <= "00000000000000000000000000000";

 elsif mclk = '1' and mclk'Event then
 cntClk_aux <= cntClk_aux + 1;
 end if;
 end process;

 process(cntClk_aux, sb_btn)
 begin
 if (sb_btn = '1') then
 enable <= '0';
 elsif (cntClk_aux(28 downto 25)="0001" or cntClk_aux(28 downto 25)="0011" or
cntClk_aux(28 downto 25)="0101") then
 enable <= '1';
 else
 enable <= '0';
 end if;
 end process;

 process
 begin
 wait until(enable'event and enable='1');
 if (sb_btn = '1') then
 Ssegcnt <= (others => '0');
 else
 Ssegcnt <= cntClk_aux
 (28 downto 25); -- DIO4 Sseg display digit
 end if;
 end process;

 cntClk <= cntClk_aux;

end behavioral;

Practical aspects of synchronous digital design 7

VHDL code for section 1.2

etff.vhd

library ieee;
 use ieee.std_logic_1164.all;

 entity ETFF is

 -- 1-bit enable rising-edge register
 port(
 T: in std_logic;-- Toggle enable
 A_RES: in std_logic; -- Asynchronous reset
 CK: in std_logic; -- Clock input
 Q: out std_logic -- Output
);

 end ETFF;

 architecture behavior of ETFF is

 signal Qaux: std_logic;

 begin

 ff:process(CK, A_RES)
 begin
 if (a_res = '1') then Qaux<='0' after 10 ps;-- asynchronous reset condition
 elsif (CK'event and CK = '1') then
 if (T='1') then
 Qaux <= not(Qaux) after 10 ps;
 end if;
 end if;
 end process;

 Q <= Qaux;

 end behavior;

asinc_count16.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity asinc_count16 is
 port (mclk : in std_logic;
 sb_btn : in std_logic;
 IO4_btn : in std_logic_vector(4 downto 0);
 IO4_swt : in std_logic_vector(7 downto 0);
 cntClk : out std_logic_vector(27 downto 0);
 Ssegcnt : out std_logic_vector(3 downto 0));
end asinc_count16;

architecture behavioral of asinc_count16 is

--

Practical aspects of synchronous digital design 8

-- Component Declarations
--

 component etff
 port(
 T: in std_logic;-- Toggle enable
 A_RES: in std_logic; -- Asynchronous reset
 CK: in std_logic; -- Clock input
 Q: out std_logic -- Output
);
 end component;

--
-- Signal Declarations
--

 signal cntClk_aux : std_logic_vector(27 downto 0);
 signal Ssegcnt_aux : std_logic_vector(3 downto 0);
 signal EN_CTL: std_logic_vector(9 downto 0);
 signal A_RES_aux1, EN_CKGEN, CKdiv_aux, conta_ck : std_logic; -- external and internal
reset;

begin

-- Divisor de mclk per flanc de pujada
 -- Combinational reset
 A_RES_aux1 <= sb_btn; -- Resets when sb_btn is pressed
 EN_CKGEN <= not IO4_BTN(4); -- Disables when button 4 is pressed

 cntClk_aux(0) <= mclk;
 -- Central clock generation
 GEN_FF: for i in 1 to 27 generate
 ETFF_i: ETFF
 port map(
 T => EN_CKGEN, A_RES => A_RES_aux1, CK => cntClk_aux(i-1), Q =>
cntClk_aux(i)
);
 end generate;

conta_ck <= cntClk_aux(27) and cntClk_aux(22); -- Produeix un glitch

-- Acumulació
 process(conta_ck, sb_btn)
 begin
 if (sb_btn = '1') then
 Ssegcnt_aux <= (others => '0');
 elsif conta_ck'event and conta_ck='1' then
 Ssegcnt_aux <= Ssegcnt_aux + IO4_swt(3 downto 0);
 end if;
 end process;

Ssegcnt <= Ssegcnt_aux;
cntClk <= cntClk_aux;

end behavioral;

