
VLSI Digital Design

LAB ASSIGNMENT 2

32-bit ALU Design

32-bit Arithmetic-Logic Unit (ALU) Design 1

0. Objectives

The objective of this laboratory assignment consists in the design of the execution unit

of the microprocessor that will be developed along the course. This execution unit is

structured as a 32-bit Arithmetic-Logic Unit (ALU). As specified in the following

section, besides executing basic arithmetic and logic operations, this unit will contain a

32-bit pseudo-random number generator.

1. Specification

The system to be designed has 5 inputs, clk, reset, opcode(4 downto 0), a(31 downto 0)

and b(31 downto 0) and two outputs, result(31 downto 0) and nzco(3 downto 0).

Input clk is the system global clock signal, and its rising edge has to trigger all the

memory elements. The reset input signal controls a synchronous system reset, and it is

active at level high ('1'). The operation to be carried out by the ALU is specified by the

opcode input signal. Input signals a and b store the two input operands for the

arithmetic or logic operations.

The result output signal stores the operation result specified by the opcode input. The

nzco output signal contains the flag values resulting from the ALU instruction execution.

The interpretation of each one of the bits that compose the nzco output is the following:

 nzco(3): "Negative" flag. It indicates whether the resulting value of the selected

operation is negative. To generate this flag, it has to be taken into account that

both input operands and the output result are interpreted in two's complement.

This flag has to be verified for any operation.

 nzco(2): “Zero” flag. It indicates that the result of a given operation is zero. This

flag has to be verified for any operation.

 nzco(1): “Carry” flag. With this propagation flag arithmetic and shift

instructions can be chained. It has to be verified only for arithmetic and logic

shift operations. For any other an operation its value has to be '0'.

 nzco(0): “Overflow” flag. It indicates that an overflow condition has appeared

when executing a 2's complement arithmetic operation. This implies that the

result is not correctly represented with the selected representation format. This

flag has to be verified only when arithmetic operations are executed. For any

other operation its value has to be '0'.

Concerning the ALU functions to be implemented, Table 1 shows the mnemonics, the

value of each input opcode and the function associated with each of the instructions that

have to be interpreted by the ALU.

32-bit Arithmetic-Logic Unit (ALU) Design 2

MNEMONIC OPCODE OPERATION

NOP 00000 No operation is done. El result has to be equal to the ALU input

operand a. Flags “overflow”, “carry” and "negative" have to be

forced to „0‟. Flag “zero” has to be forced to „1‟.

OR 00001 The result signal returns the OR logic function of the ALU two

input operands.

XOR 00010 The result signal returns the XOR logic function of the ALU two

input operands.

NOR 00011 The result signal returns the NOR logic function of the ALU two

input operands.

AND 00100 The result signal returns the AND logic function of the ALU

two input operands.

ADD 00101 The result signal returns the arithmetic sum of the ALU two

input operands.

SUBB 00110 The result signal returns the a input value minus b input value.

NOT 00111 The result signal is obtained inverting all the bits of the b input

value.

ROR 01000 Rotate right. The result is obtained by rotating the input a value

to the right the number of positions indicated by the 3 less-

significant bits of input b.

SLL 01001 Shift-left logical. The result is obtained by shifting the input a

value to the left the number of positions indicated by the 3 less-

significant bits of input b. The less significant part of the result

is filled with '0' for each encoded shift.

SLR 01010 Shift-right logical. The result is obtained by shifting the input a

value to the right the number of positions indicated by the 3 less-

significant bits of input b. The most significant part of the result

is filled with '0' for each encoded shift.

SRA 01011 Shift-right arithmetic. The result is obtained by shifting the input

a value to the right the number of positions indicated by the 3

less-significant bits of input b. The most significant part of the

result is filled with the value of input a most significant bit for

each encoded shift.

JUMP 01111 Jump instruction. The result signal returns the arithmetic sum of

the ALU two input operands.

JUMPI 10010 Immediate jump instruction. The result signal returns the

arithmetic sum of the ALU two input operands.

LOAD 10011 Load instruction. The result signal returns the arithmetic sum of

the ALU two input operands.

MOVE 11011 Data move instruction. The result signal returns the value of

input b.

BITSET 11100 This instruction sets (forces to '1') the bit of input a that is

located at the position encoded by the 5 less-significant bits of

input b.

BITCLEAR 11101 This instruction resets (forces to '0') the bit of input a that is

located at the position encoded by the 5 less-significant bits of

input b.

RANDOMSET 11110 Loads the value of input b to the pseudo-random number

generator.

RANDOMIZE 11111 The result signal returns the current content of the pseudo-

random number generator.

Table 1. ALU instruction set.

Regarding the subsystem in charge of generating the pseudo-random numbers, the

proposed structure, shown in Fig. 1, corresponds to the so-called Linear Feedback Shift

Register (LFSR).

32-bit Arithmetic-Logic Unit (ALU) Design 3

QD QD QD QD QD QD QD QD QD QD QD QD
q(0) q(1) q(2)

q(4)

q(5) q(6)

q(30)

q(31)

clk

Figure 1. Structure of the pseudo-random number generation subsystem to be included

into the ALU.

To facilitate the structure understanding, the elements required to load the value

corresponding to input b when an instruction RANDOMSET is executed are not shown

in Figure 1. Also the register reset input has been omitted in the figure. This input has to

be controlled by the ALU reset input signal.

The following considerations have to be taken into account for the ALU proper

implementation:

 The only sequential element of the design is the pseudo-random number

generator.

 Inputs a, b and opcode are externally registered, thus they do not have to be

loaded into any register. These inputs are stable during a clk clock period. For

simulation purposes, input changes have to be produced with a 2 ns delay after

the clock rising edge.

 All instructions are performed in a single clock cycle.

 System clock frequency is 25 MHz.

 Concerning arithmetic operations, functional subsystems can be implemented

with any architectural option. However, the selected option should have the

minimum area occupancy. Moreover, these subsystems must operate properly at

the specified clock frequency.

 The ALU entity name has to be execution_unit.

 The entity input and output ports have to be named as specified.

The tasks to be done in this laboratory assignment are:

 Describe the ALU in VHDL.

 Simulate functionally with Modelsim (no delays), verifying the correct syustem

operation.

 Synthesize with Precision. Verify that the resulting flip-flop number from

synthesis is exactly 32, that is, the corresponding to the LFSR, and make sure

that no additional sequential elements (latchs) appear. Obtain the critical path

area and delay results.

 Compile with ISE (placement and routing). Use the device specified in the initial

tutorial. Verify the device resource occupancy.

 Simulate with Modelsim including the backannotation delays. Verify that the

ALU still operates properly at the specified clock frequency.

