
an8003_02 1 March 1998

The Basics of
One-Wire ISP  with

an ISP-IrDA Example
™

Introduction

Lattice Semiconductor, the inventor of In-System Pro-
grammable devices, has been successfully programming
PLDs and CPLDs in-system longer than any other com-
pany. There are currently several methods for
downloading information to a Lattice ISP device.  The
most common programming controllers are a PC parallel
port, automatic test equipment (ATE) or embedded
microcontroller.  Each of  these methods involve a direct
four- or five-wire connection from the source to the ISP
target device.  With this standard ISP connection, it is
possible to control the Lattice device’s four or five pro-
gramming pins.  Figure 1 shows a block diagram for a
configuration using a PC and an ISP target.

ISP Overview

The ISP target can include a single device or a daisy
chain of multiple devices.  The required ISP signals
include ispEN,  SDIN, MODE, SCLK and SDO.  For those
familiar with the four-wire IEEE 1149.1 boundary scan
TAP controller, the TAP controller signals TDI, TMS, TCK
and TDO can be used interchangeably with the ISP
signals SDI, MODE, SCLK, and SDO respectively.  Most
Lattice ispLSI® devices use the ISP Enable (ispEN) pin to
determine whether the device is in Edit Mode (ISP
programming mode) or Normal Mode (normal device
operation mode).    The ispGAL®22V10 and ispGDS™
enter edit mode when SDI is a logic high and a SCLK is
received.

The Serial Data In (SDI) pin functions as both a data input
to the serial shift registers in the device and one of two

control pins for the programming state machine.  The
Mode pin combines with SDI to control the programming
state machine.  The Serial Clock (SCLK) pin is used to
clock the internal serial shift registers and the ISP state
machine.  Serial Data Out (SDO) is connected to the
output of the internal shift registers.  If you are unfamiliar
with the advantages of Lattice ISP, refer to the latest
edition of the Lattice Semiconductor Data Book or CD-
ROM for additional information.

ISP Innovation

With years of ISP experience, Lattice has developed
solutions for many challenges encountered when imple-
menting in-system programming. Customers frequently
require unique solutions.  For example, programming
times of less than 20 seconds became essential for
customers programming with Automatic Test Equipment.
The solution to that challenge led to the development of
Lattice Turbo ispDOWNLOAD™ programming.  Turbo
programming is a method in which a daisy chain of
devices is programmed in parallel.  The programming
time of the entire daisy chain is accomplished in approxi-
mately the time it takes to program the largest device in
the chain.  What started as an ATE-driven solution has
carried over to all programming platforms.

ISP-IrDA arose from similar customer inquiries.  The
Infrared Data Association (IrDA) has standardized infra-
red data communication.  ISP-IrDA incorporates ISP with
standard IrDA transmission.  While many companies are
still experimenting with the first steps of a four- or five-
wire ISP solution, Lattice has taken ISP to the next level
with one-wire ISP.

Figure 1. Standard Four- or Five-Wire ISP

ISP Signals

ispLSI

ispLSI

ispLSI

ispLSI

ispLSI



2

The Basics of One-Wire ISP
with an ISP-IrDA Example

simplest parallel-to-serial conversion, although not nec-
essarily the most efficient.  Figure 2 shows the pinout for
the ispDOWNLOAD cable and illustrates how the parallel
port is used.

The first four output lines are used by SDIN, SCLK,
MODE, and ispEN respectively.  SDO comes into the
seventh input line.  The additional I/O lines shown in the
pinout are used by the software for cable sensing and Vcc
and GND detection.  These lines are not required for ISP
but were added to help the user troubleshoot configura-
tion problems.  Notice that if the input and output bytes
are combined into a single byte, there is no conflict with
the ISP signals.  Figure 3 shows this combined byte.

This configuration is used because the bit order format
agrees with the parallel version.  Each ISP signal corre-
sponds to a specific bit location within the serial byte.
This method does not allow for rapid data transmission
since it takes a serial byte to change any one ISP signal.
The advantage of this structure is that it is easy to decode
the serial byte at the ISP target.

Since all the ISP data fits into a serial byte, there is simply
the conversion from parallel-to-serial and then serial-to-
parallel.  Figure 4 illustrates the additional overhead
required for one-wire ISP compared to standard ISP as
illustrated in Figure 1.

The PC can convert parallel ISP signals to serial ISP
bytes and initialize and control the interface transceiver.
A controller is required in front of the ISP target.  The
controller must be able to initialize and control the inter-
face transceiver.  It must also convert the serial ISP bytes
back to parallel ISP signals.

A main area of concern in changing from bi-directional
parallel communication to half-duplex serial communica-
tion is avoiding data conflicts on the one-wire.  However,
there are three extra bits within the serial byte available
(see Figure 3).  The extra bits can be used for handshak-
ing or other user-specific functions.  When programming,
a majority of the data is sent to the ISP target.  SDO is the
only signal returning from the ISP target and is used to
read the device ID, verify programming and connect to
other devices in the daisy chain.  To reduce the compli-
cation involved with managing the half-duplex serial line,
Bit 7 is used to request SDO.  No additional hardware

In  field upgrade situations where I/O is needed for other
uses or there is a need for remote access, running a four-
or five-wire connection is not practical.  For example,
telecommunications companies want the ability to repro-
gram boxes on top of telephone poles without climbing
poles and exposing the electronics to the elements.  With
ISP-IrDA, Lattice makes this a reality.

Infrared data communication is quickly becoming a popu-
lar remote data communication standard.  The IrDA
standard defines protocol for wireless data communica-
tion.  Essentially, IrDA is half-duplex serial communication.
In the first section of this application note, the basic theory
involved for changing the five-wire interface to a one-wire
interface is presented.  The following section will de-
scribe the IrDA model in detail.  After reading this
application note, the reader will have a basic understand-
ing of how to apply ISP devices for use with many remote
communication standards.

One-Wire ISP Theory

The basic theory behind converting the standard four- or
five-wire ISP to one-wire ISP is quite simple.  A standard
parallel port has eight data lines in and eight data lines
out.  Serial communication typically uses eight data bits.
ISP uses four signals out and one signal in.  Everything
is synchronized by SCLK.  Rather than having four or five
signals connected in parallel, it is possible to compact the
these signals into a serial byte.  This conversion is the

SDI SCLK MODE ispEN SDO

Bit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Figure 2. ispDOWNLOAD Cable

Figure 3. ISP Serial Byte

100 pF

100 ohm
TCK / SCLK

DB25 Parallel Port
Connector

SDOUT TDO / SDOUT

TDI / SDIN

JTAG / isp Interface

ispEN

RESET

SDIN

 SCLK

MODE

10K

10K

100 pF

100 ohm

Vcc

Vcc

TMS / MODE
100 pF

100 ohm

100 pF

100 ohm

100 pF

100 ohm

ispEN

74vhc244

10K

Vcc

10K

Vcc

10K

Vcc

10K

Vcc

RESET

JTAG

VCC IN

GND

VCC

DL1 ID

DL2 ID

OUT

DI4 (pin 13)

DI5 (pin 12)

Do6 (pin 8)

DO5 (pin 7)

DO4 (pin 6)

DO3 (pin 5)

DO2 (pin 4)

DO1 (pin 3)

DO0 (pin 2)

DI6 (pin 10)

vcc sense

GND

vcc

(pin 20)

DI3 (pin 15)



3

The Basics of One-Wire ISP
with an ISP-IrDA Example

overhead is required to wait for the line to become free.
If Bit 7 is set to a ‘1’, then one SDO bit is read and sent
back by the interface controller.  For example, when the
PC wants to read the device ID, it looks for the first bit of
the device ID.  The PC sends out a request for SDO.
Next, the PC waits for the SDO bit to be sent by the
interface controller before sending the next serial byte.
The next string of serial bytes shifts the next bit of the
device ID to SDO.  The PC again requests SDO and waits
for it to return.  This process continues until the device ID
is read.  Therefore, not a lot of additional hardware is
required.  Figure 5 shows the final one-wire serial byte
configuration.

While quite simple in theory, converting to one-wire ISP
requires knowledge of the transmission medium, inter-
faces and ISP programming software.  Software must be
modified and a hardware interface controller must be
built.  In the following section, these challenges have
been removed with a detailed description of the ISP-IrDA
interface.

ISP-IrDA Interface

The previous section describes the basic theory of con-
version to one-wire ISP.  In this section, the ISP-IrDA
model will be discussed in detail.  Covered are two areas
of concern in converting from the standard four- or five-
wire ISP interface:  the modification of the ispDOWNLOAD
software and the addition of the interface controller in
front of the first ISP device.  Figure 6 shows a block
diagram for ISP-IrDA.

Interface
Transceiver

Interface
Transceiver

RS-232
Data

• IrDA
• RF
• RS-232
• 1-wire
• Telephone

ISP Target
Devices

Interface
Control 

and Data 
Conversion

Serial
Data

ISP Signals

PC

Signals:

Figure 4. One-Wire ISP Interface

Software

Lattice offers several versions of ispDOWNLOAD soft-
ware for use in various applications or with different
platforms.  ISP Daisy Chain Download software is a pre-
compiled version for Windows that includes support for
turbo and one-at-a-time device programming.  It has a
utility to assist in creating programming vectors for vari-
ous ATE manufacturers.  To support ISP programming
through embedded controllers or any other platform,
Lattice supplies C source code called ispCODE™ soft-
ware.  ispCODE compiles to a DOS command line utility
for Turbo ispDOWNLOAD programming a daisy chain of
devices through a PC parallel port.  It requires that the
user specify an ispSTREAM™ file to program each
device at the command line.  The ispSTREAM file format
is a unique Lattice format made up of the compressed
JEDEC files plus instructions that the software uses to
program the daisy chain.  A user must also write a short
text file called a DLD file showing the number of devices,
their order in the chain, the operation to be performed on
each device and the JEDEC file (if the operation requires
one).  Running dld2isp.exe on this DLD file creates the
ispSTREAM file.  Please refer to the Lattice Semiconduc-
tor Data Book or CD-ROM for more information on
ispCODE software.

Obviously, some software changes are required in order
to program a daisy chain of devices over an IrDA link.
Fortunately, most newer laptops include a built-in IrDA
port that is accessed as a secondary serial port.  This
simplifies the initialization at the PC end because the
IrDA transceiver is automatically initialized when the
serial port address used by the IrDA port is configured.
With ispCODE version 3.05 or later, many of the modifi-
cations are minor.  In the main body of ispCODE, the Vcc
and cable sensing for the parallel port connector is
removed.  Selections for a COM port and baud rate are

SDI SCLK MODE ispEN SDO Request
SDO

Bit 1Bit 0 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Figure 5. One-Wire Serial Byte



4

The Basics of One-Wire ISP
with an ISP-IrDA Example

added.  Once the COM port and baud rate are known, the
proper UART is initialized for the given baud rate plus
eight data bits, no parity, and one stop bit.  Variables are
added to lattice.h for COM port addresses, UART flags,
UART registers and the SDO request bit.

The larger changes come in the two functions for data
output and data input.  The isp_setpin function is used to
change one ISP signal at a time and output the change
to the data port.  Because of the relatively slow transmis-
sion speed of a serial port compared to a PC, care has to
be taken to not overwrite any data before it can be sent.
It is important to check that the UART’s data transmission
register is empty before writing to it.  The LSR UART flag
signifies when the data register is empty.  Once the data
register is ready, the serial byte can be written to the port.
It is best to wait for the byte to be sent before continuing
by waiting for LSR to signal that the data register is empty
again.

The isp_SDO function is called when one bit from SDO is
required.  With five-wire ISP, SDO is always available
because it has a dedicated line.  The isp_SDO function
had to be changed from a simple read of the SDO line to
a request for SDO to be sent followed by a read of that
data.  The flow for the function changed to clearing the
UART receive buffer, sending out a byte with the
request_SDO bit (Bit 7) high, waiting for a byte to return,
reading that byte, extracting the SDO bit (Bit 6) from that
byte, and resetting the request_SDO bit back to ‘0’ for the
next byte.  Because IrDA streams can be interrupted
easily by a drastic change in lighting or a physical
blockage of the signal, it is necessary to add a time-out
when waiting for SDO to return.  A minimum of  two
seconds is given to receive SDO before timing out and
exiting the program.

Hardware

Figure 6 shows the block diagram for the ISP-IrDA model.
The format of the serialized ISP signals was defined in

the previous section.  The preliminary feasibility tests
done on the IrDA interface used a 8051 microcontroller
for the interface control and serial-to-parallel conversion.
However, the decision to use a Lattice ispLSI 1032 was
made for several reasons.  The large volume of data
being transmitted caused the programming time to be
directly related to the baud rate.  The maximum baud rate
for most systems is 115,200 baud.  The logic to initialize
the Crystal CS8130 IrDA transceiver, convert the serial-
to-parallel, and handle the SDO contingency  is quite
simple.  Also, the ispLSI1032 in the thin quad flat pack
(TQFP) package is small and uses little PCB space.

The interface controller is made up of two state ma-
chines, as well as serial transmit and receive shift
registers.  At power-up, the controller must initialize the
CS8130 at 9600 baud.  Once completed, it waits for serial
data to come in from the CS8130.  After a serial byte has
been received, the request_SDO bit must be checked.  If
SDO is not required, then the byte contains programming
signals.  Bit 0 through Bit 3 contain the ISP signals and
are sent out to the ISP target devices.  If SDO is required,
the controller reads SDO from the ISP target, places the
SDO bit into Bit 6 of a serial byte and sends the byte to the
CS8130.

In the IrDA example, the ispLSI 1032 initializes the
CS8130 by turning on transmit and receive, setting Ir
receive sensitivity to 23.4nA, and changing the baud rate
to 115,200 baud.  Additionally, the ispLSI 1032 uses a
7.3728MHz clock which is divided by two for the CS8130
clock.  The schematic for the IrDA module is shown in
Figure 7.

Compared to standard five-wire ispTURBO program-
ming from the Windows environment, the ISP-IrDA-based
programming in this example is approximately three
times slower if running at 115,200 baud.  Lattice’s ispLSI
demoboard is a small PCB with a four-device daisy chain,
five seven-segment LEDs and ISP connections.  The

Figure 6. ISP-IrDA-Based Programming Block Diagram

Crystal
CS81-30
with LEDs

and pin
diode

Built-in
IrDA Port

ISP Target
Devices

Lattice
ispLSI
1032

PC running 
a modified 
version of 
ispCODE 
3.05

IrDA Signal Serial Data ISP Signals



5

The Basics of One-Wire ISP
with an ISP-IrDA Example

devices include an ispLSI 2064-100LT, an
ispGAL22V10C-15LJ, an ispLSI 1016-60LT and an
ispGDS22-7J.  The ISP-IrDA module is capable of plug-
ging onto the demoboard’s eight-pin AMP connector
while the demoboard is powered up.  If using a laptop with
an IrDA port, you are now ready to download your design
files.  Contact your local Lattice sales office for a demon-
stration.

Summary

Many ideas for making ISP-IrDA practical for a produc-
tion environment have already been uncovered.  Imagine
a hand-held IrDA download box in front of a cart full of
boards.  By typing in the code for a particular board, the
technician is able to program the devices on that board
quickly and easily.

Figure 7. Schematic ISP-IrDA Module

Building a more intelligent controller or incorporating
memory to speed data transfer in order to achieve pro-
gramming times similar to those of  the parallel five-wire
ISP are also being investigated.  Other remote transmis-
sion protocols such as modem-to-modem and RF are
being developed.  If system manufacturers are able to
update their remote hardware with only a modem and a
phone line, imagine the savings in time and human effort.


	Table of Contents
	Introduction
	ISP Overview
	ISP Innovation
	One-Wire ISP Theory
	ISP-IrDA Interface
	Summary

