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About This Manual

The LabVIEW Measurements Manual contains information you need to
take and analyze measurement data in LabVIEW. You should have a basic
knowledge of LabVIEW before you try to read this manual. If you have
never worked with LabVIEW, please read through Getting Started with
LabVIEW before you begin.

This manual supplements the LabVIEW User Manual, and assumes that
you are familiar with that material. You also should be familiar with the
operation of LabVIEW, your computer, your computer's operating system,
and your data acquisition (DAQ) device.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items, dialog box options, and palettes. Bold text also denotes
controls and buttons on the front panel and parameter names on the block
diagram.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.
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monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• Getting Started with LabVIEW

• LabVIEW User Manual

• LabVIEW Help, available by selecting Help»Contents and Index

• The user manuals for your data acquisition devices

• Various Application Notes, available on the National Instruments
Web site at http://zone.ni.com/appnotes.nsf/
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Part I

Introduction to Measurement

This part contains information you should know before taking
measurements in LabVIEW.

Part I, Introduction to Measurement, contains the following chapters:

• Chapter 1, What Is Measurement and Virtual Instrumentation?,
introduces the concepts of measurement and virtual instrumentation.

• Chapter 2, Comparing DAQ Devices and Special-Purpose Instruments
for Data Acquisition, describes your options for hardware and
software systems.

• Chapter 3, Installing and Configuring Your Measurement Hardware,
explains how to set up your system to use data acquisition with
LabVIEW and your DAQ hardware.

• Chapter 4, Example Measurements, explains several examples of
common measurements using LabVIEW.
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1
What Is Measurement and
Virtual Instrumentation?

You take measurements with instruments. Instrumentation helps science
and technology progress. Scientists and engineers around the world use
instruments to observe, control, and understand the physical universe.
Our quality of life depends on the future of instrumentation—from basic
research in life sciences and medicine to design, test and manufacturing
of electronics, to machine and process control in countless industries.

History of Instrumentation
As a first step in understanding how instruments are built, consider the
history of instrumentation. Instruments have always made use of widely
available technology. In the 19th century, the jeweled movement of the
clock was first used to build analog meters. In the 1930s, the variable
capacitor, the variable resistor, and the vacuum tube from radios were used
to build the first electronic instruments. Display technology from the
television has contributed to modern oscilloscopes and analyzers. And
finally, modern personal computers contribute high-performance
computation and display capabilities at an ever-improving
performance-to-price ratio.

What Is Virtual Instrumentation?
Virtual instrumentation is defined as combining hardware and software
with industry-standard computer technologies to create user-defined
instrumentation solutions. National Instruments specializes in developing
plug-in hardware and driver software for data acquisition (DAQ),
IEEE 488 (GPIB), VXI, serial, and industrial communications. The driver
software is the programming interface to the hardware and is consistent
across a wide range of platforms. Application software such as LabVIEW,
LabWindows/CVI, ComponentWorks, and Measure deliver sophisticated
display and analysis capabilities required for virtual instrumentation.
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You can use virtual instrumentation to create a customized system for test,
measurement, and industrial automation by combining different hardware
and software components. If the system changes, you often can reuse the
virtual instrument components without purchasing additional hardware or
software.

System Components for Taking Measurements
with Virtual Instruments

Different hardware and software components can make up your virtual
instrumentation system. Many of these options are described in more detail
throughout this manual. There is a wide variety of hardware components
you can use to monitor or control a process or test a device. As long as you
can connect the hardware to the computer and understand how it makes
measurements, you can incorporate it into your system.
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2
Comparing DAQ Devices and
Special-Purpose Instruments
for Data Acquisition

Measurement devices, such as general-purpose data acquisition (DAQ)
devices and special-purpose instruments, are concerned with the
acquisition, analysis, and presentation of measurements and other data you
acquire.

Acquisition is the means by which physical signals, such as voltage,
current, pressure, and temperature, are converted into digital formats and
brought into the computer. Popular methods for acquiring data include
plug-in DAQ and instrument devices, GPIB instruments, VXI instruments,
and RS-232 instruments.

Data analysis transforms raw data into meaningful information. This can
involve such things as curve fitting, statistical analysis, frequency response,
or other numerical operations.

Data presentation is the means for communicating with your system in an
intuitive, meaningful format.

Building a computer-based measurement system can be a daunting task.
There is a wide variety of hardware components you can use to monitor or
control a process or test a device. Should you build on traditional
rack-and-stack IEEE 488 equipment or look to modular VXI-based
solutions? Or maybe you should consider a PC-based plug-in board
approach. Which type of hardware meets your needs today and will be
around for the long run? What are the differences between all the choices?
This chapter will describe several types of hardware solutions to help you
answer these questions.
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DAQ Devices versus Special-Purpose Instruments
The fundamental task of all measurement systems is the measurement
and/or generation of real-world physical signals. The primary difference
between the various hardware options is the method of communication
between the measuring hardware and the computer. In this chapter we will
separate the discussion into two categories: general purpose DAQ devices
and special purpose instruments.

General purpose DAQ devices are devices that connect to the computer
allowing the user to retrieve digitized data values. These devices typically
connect directly to the computer’s internal bus through a plug-in slot. Some
DAQ devices are external and connect to the computer via serial, GPIB, or
ethernet ports. The primary distinction of a test system that utilizes general
purpose DAQ devices is where measurements are performed. With DAQ
devices, the hardware only converts the incoming signal into a digital signal
that is sent to the computer. The DAQ device does not compute or calculate
the final measurement. That task is left to the software that resides in the
computer. The same device can perform a multitude of measurements by
simply changing the software application that is reading the data. So, in
addition to controlling, measuring, and displaying the data, the user
application for a computer-based DAQ system also plays the role of
the firmware—the built-in software required to process the data and
calculate the result—that would exist inside a special purpose instrument.
While this flexibility allows the user to have one hardware device for many
types of tests, the user must spend more time developing the different
applications for the different types of tests. Fortunately, LabVIEW comes
with many acquisition and analysis functions to make this easy.

Instruments are like the general purpose DAQ device in that they digitize
data. However, they have a special purpose or a specific type of
measurement capability. The software, or firmware, required to process the
data and calculate the result is usually built in and cannot be modified. For
example, a multi-meter can not read data the way an oscilloscope can
because the program that is inside the multi-meter is permanently stored
and cannot be changed dynamically. Most instruments are external to the
computer and can be operated alone, or they may be controlled and
monitored through a connection to the computer. The instrument has a
specific protocol that the computer must use in order to communicate with
the instrument. The connection to the computer could be Ethernet, Serial,
GPIB, or VXI. There are some instruments that can be installed into the
computer like the general purpose DAQ devices. These devices are called
computer-based instruments.
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The following sections discuss the communication between computers and
measurement hardware.

How Do Computers Talk to DAQ Devices?
Before a computer-based system can measure a physical signal, a sensor or
transducer must convert the physical signal into an electrical one, such as
voltage or current. The plug-in DAQ device is often considered to be the
entire DAQ system, although it is actually only one system component.
Unlike most stand-alone instruments, you cannot always directly connect
signals to a plug-in DAQ device. In these cases, you must use accessories
to condition the signals before the plug-in DAQ device converts them to
digital information. The software controls the DAQ system by acquiring
the raw data, analyzing the data, and presenting the results.

Figure 2-1 shows two options for a DAQ system. In Option A, the plug-in
DAQ device resides in the computer. In Option B, the DAQ device is
external. With an external board, you can build DAQ systems using
computers without available plug-in slots, such as some laptops. The
computer and DAQ module communicate through various buses such as the
parallel port, serial port, and Ethernet. These systems are practical for
remote data acquisition and control applications.
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Figure 2-1. DAQ System Components

A third option, not shown in Figure 2-1, uses the PCMCIA bus found on
some laptops. A PCMCIA DAQ device plugs into the computer, and signals
are connected to the board just as they are in Option A. This allows for a
portable, compact DAQ system.

Role of Software
The computer receives raw data. Software takes the raw data and presents
it in a form the user can understand. Software manipulates the data so it can
appear in a graph or chart or in a file for report. The software also controls
the DAQ system, telling the DAQ device when to acquire data, as well as
from which channels to acquire data.
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Typically, DAQ software includes drivers and application software. Drivers
are unique to the device or type of device and include the set of commands
the device accepts. Application software (such as LabVIEW) sends the
commands to the drivers, such as acquire a thermocouple reading and
return the reading, then displays and analyzes the data acquired.

LabVIEW includes a set of VIs that let you configure, acquire data from,
and send data to DAQ devices. This saves you the trouble of having to write
those programs yourself. LabVIEW DAQ VIs make calls to the NI-DAQ
Application Program Interface (API). The NI-DAQ API contains the tools
and basic functions that interface to DAQ hardware.

How Do Computers Talk to
Special-Purpose Instruments?

The fundamental task of an instrument is to measure some natural
phenomenon. Unlike data acquisition, the signal the computer ultimately
receives requires no conditioning. How the computer controls the
instrument and acquires data from the instrument depends on how the
instrument is built. Common types of instruments include the following:

• GPIB

• Serial Port

• VXI

• PXI

• Computer-based instruments

These instrument types are discussed in more detail in Appendix A, Types
of Instruments.

All external instruments communicate with the computer through some
type of bus where a communication protocol has been defined. The
instrument has a set of commands that it understands. The user writes an
application that sends commands to and receives data from an instrument.
As the test system designer, you have to be concerned with the software
connection with the instrument. That is, you have to understand how your
application and your instrument communicate with each other.
Additionally, you have to be concerned with the type of hardware
connection to your instrument.
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How Do Programs Talk to Instruments?
As test developers over the years have discovered, instrument drivers are
a key factor in test development. An instrument driver is a collection
of functions that implement the commands necessary to perform the
instrument’s operations. LabVIEW instrument drivers simplify instrument
programming to high-level commands, so you do not need to learn the
low-level instrument-specific syntax needed to control your instruments.
Instrument drivers are not necessary to use your instrument. They are
merely time savers to help you develop your project so you do not need to
study the instrument manual before writing a program.

Instrument drivers create the instrument commands and communicate with
the instrument over the serial, GPIB, or VXI bus. In addition, instrument
drivers receive, parse, and scale the response strings from instruments into
scaled data that can be used in your test programs. With all of this work
already done for you in the driver, instrument drivers can significantly
reduce development time.

Instrument drivers can help make test programs more maintainable in the
long-run because instrument drivers contain all of the I/O for an instrument
within one library, separate from your other code. You are protected against
hardware changes and upgrades because it is much easier to upgrade your
test code when all of the code specific to that particular instrument is
self-contained within the instrument driver.

LabVIEW provides more than 700 LabVIEW instrument drivers from
more than 50 vendors. A list is available on the National Instruments
Developer Zone, zone.ni.com/idnet You can use these instrument
drivers to build complete systems quickly. Instrument drivers drastically
reduce software development costs because developers do not need to
spend time programming their instruments. You can reuse the drivers in a
variety of systems and configurations.

Deciding what kind of instrument to use depends on the tests and
measurements you are taking. Appendix A, Types of Instruments, describes
several traditional forms of instrumentation hardware that you are likely to
encounter when developing a measurement system.
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3
Installing and Configuring Your
Measurement Hardware

This chapter explains how to set up your system to take measurements
with LabVIEW and your data acquisition hardware. This chapter contains
hardware installation and configuration and software configuration
instructions and some general information and techniques.

Overview
NI-DAQ, the driver software for National Instruments DAQ devices,
provides LabVIEW with a high-level interface to measurement devices.
National Instruments also supplies driver software for communicating with
special purpose instruments, including NI-488.2, NI-VISA, and IVI.

Figure 3-1 shows the relationship between LabVIEW, driver software, and
measurement hardware. The LabVIEW VIs call into the driver software
which communicates with the measurement hardware.

Figure 3-1. Relationship between LabVIEW, Driver Software, and
Measurement Hardware
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Installing and Configuring Your Hardware
Before you begin your measurement application development, you must
install and configure your measurement hardware. The software drivers
need the hardware configuration information to program your hardware
properly.

As mentioned earlier, each system architecture is different. Some systems
might use general purpose plug-in DAQ devices or a PCMCIA card, others
might use a parallel port to control external devices. Still others might use
special purpose instruments controlled through serial, Ethernet, GPIB, or
VXI ports. Your system requires a unique configuration procedure to
ensure your measurement devices work properly and coexist with other
peripherals. However, in most cases, you complete the following general
steps to install your DAQ device.

1. Install LabVIEW and your driver software. The LabVIEW installer
installs National Instruments driver software if the version included
with LabVIEW is newer than any previously installed version of the
drivers.

2. Power off your computer.

3. Install your measurement hardware.

4. Power on your computer.

5. Configure your measurement hardware using Measurement &
Automation Explorer (Windows) or the Configuration Utility
(Macintosh).

Note For Windows 2000/NT, be sure you log on as an administrator when installing the
LabVIEW and driver software and when configuring your measurement hardware.

Before installing your measurement hardware, consult your hardware user
manual to see if you need to change any hardware-selectable options. For
example, some hardware have jumpers to select analog input polarity, input
mode, analog output reference, and so on. Make a note of which options
you change so you can notify the driver software either by entering the
information in one of the configuration utilities or using function calls in
your application.

Refer to Measurement & Automation Explorer Help or the
Troubleshooting Wizards, available at www.ni.com, for more specific
information about installing and configuring your hardware.
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The following sections discuss the utilities available to you to configure
your hardware on different operating systems.

Measurement & Automation Explorer (Windows)
Measurement & Automation Explorer is a Windows-based application
installed during your National Instruments driver software installation.
Double-click the Measurement & Automation icon on your desktop to
configure your National Instruments software and hardware, execute
system diagnostics, add new channels and interfaces to your system,
and view the devices and instruments you have connected.

NI-DAQ Configuration Utility (Macintosh)
The NI-DAQ Configuration Utility configures the parameters for the DAQ
devices installed in your Macintosh computer. The Macintosh OS
automatically recognizes DAQ devices. After you install your DAQ device
in your system, you must use the Configuration Utility to assign a device
number to the device. The configuration utility saves the device number
and the configuration parameters for your DAQ device and SCXI system.
After you configure your system, you do not need to run the Configuration
Utility again unless you change the system parameters. A shortcut to the
NI-DAQ Configuration Utility is installed in the LabVIEW folder.

NI-488.2 Configuration Utility (Macintosh)
The NI-488.2 Configuration Utility, available at Start»Settings»Control
Panel, configures the parameters for the GPIB devices installed in your
Macintosh computer. The Macintosh OS automatically recognizes GPIB
devices. You can view or modify the default configuration settings using
this utility.

Configuring Your DAQ Channels
After you install and configure your DAQ device, you can configure your
DAQ channels. LabVIEW NI-DAQ software includes the DAQ Channel
Wizard, which you can use to configure the analog and digital channels on
your DAQ device—DAQ plug-in boards, stand-alone DAQ products, or
SCXI modules. On Windows, access the DAQ Channel Wizard through the
Data Neighborhood in Measurement & Automation Explorer. On
Macintosh, access the DAQ Channel Wizard by selecting Tools»Data
Acquisition»DAQ Channel Wizard in LabVIEW. The DAQ Channel
Wizard helps you define the physical quantities you measure or generate on
each DAQ hardware channel. You can configure information about the
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physical quantity you are measuring, the sensor or actuator you are using,
and the associated DAQ hardware.

As you configure channels in the DAQ Channel Wizard, you give each
channel configuration a unique name that is used when addressing your
channels in LabVIEW. The channel configurations you define are saved in
a file that instructs the NI-DAQ driver how to scale and process each DAQ
channel by its name. You can simplify the programming required to
measure your signal by using the DAQ Channel Wizard to configure your
channels.

Assigning VISA Aliases and IVI Logical Names
On Windows, you can assign meaningful VISA Aliases and IVI Logical
Names to your instruments that you control using VISA and IVI. Assign
VISA Aliases in the Devices and Interfaces section in Measurement &
Automation Explorer. Configure IVI Logical Names in the IVI section in
Measurement & Automation Explorer. The aliases and logical names can
be used in your LabVIEW application development to refer to your
instrument. For example, you can assign the alias scope to the port that has
a scope connected to it. Refer to Part IV, Instrument Control in LabVIEW,
for more information about communicating with special purpose
instruments.

On UNIX, you can set VISA Aliases to make VISA resource names easier
to remember by running visaconf.

Configuring Serial Ports on Macintosh
Launch the VISA Find Resource function, available on the Functions»
Instrument I/O»VISA»VISA Advanced palette. When you launch this
function, new ports are automatically detected and assigned VISA resource
names.

Configuring Serial Ports on UNIX
Run visaconf. Click the Add Static Resource button and create a new
resource name, such as ASRL99::INSTR. Then fill in the remaining fields.
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4
Example Measurements

This chapter describes how to take common measurements using
LabVIEW. Many of the examples show how to take these measurements
using Multifunction Input Output (MIO) type DAQ devices. These
examples use the DAQ VIs. Other examples explain how to take these
measurements using an instrument. An instrument can be a stand-alone
device connected to a GPIB or Serial bus or a dedicated plug-in instrument
board. The instrument examples use the IVI class driver VIs but are similar
to how you can build an application with any kind of instrument driver.

Example DMM Measurements
This section describes how to take measurements typical of a digital
multimeter (DMM).

Use the DAQ Channel Wizard to name and configure analog and digital
channels on your DAQ device. Refer to Chapter 3, Installing and
Configuring Your Measurement Hardware, for more information about the
DAQ Channel Wizard.

How to Measure DC Voltage
Direct Current (DC) signals are analog signals that slowly vary with time.
Common DC signals include voltage, temperature, pressure, and strain.
Since DAQ devices read voltage, most of these measurements require a
transducer. A transducer is a device that converts a physical phenomenon
into an electrical signal.

With DC signals you are most interested in how accurately you can
measure the amplitude of a signal at a given point in time. To improve
the accuracy of most measurements, use signal conditioning. Signal
conditioning involves manipulating the signal using hardware and
software. Common software signal conditioning includes averaging,
filtering, and linearization. In this manual, you primarily use software
signal conditioning. Common hardware signal conditioning includes
amplification, cold junction compensation (for thermocouples), excitation,
bridge completion, and filtering. Refer to Chapter 9, SCXI—Signal
Conditioning, for more information about software signal conditioning.
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Refer to Application Note 048, Signal Conditioning Fundamentals for
PC-Based Data Acquisition Systems, available on the National Instruments
Web site at zone.ni.com/appnotes.nsf/, for more information about
hardware signal conditioning.

The examples that follow show the data acquisition system, the typical
signal being acquired, a sketch of how to physically connect the transducer
involved, and LabVIEW diagrams of how to acquire the signal.

Single-Point Acquisition Example
Figure 4-1 shows a simple data acquisition system for DC measurements
using an anemometer to measure wind speed.

Figure 4-1. Simple Data Acquisition System

In this example, you take a single wind-speed measurement. In the
Averaging a Scan Example section, you apply some simple software signal
conditioning to improve our measurement.

Figure 4-2 shows what the actual wind speed might be at a given time.

Figure 4-2. Wind Speed
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Figure 4-3 shows a typical wiring diagram for an anemometer with
an output range of 0 to 10 V, which corresponds to wind speed from
0 to 200 mph. This means that in software, you will need to scale the data
using the following formula:

anemometer reading (V) × 20 (mph/V) = wind speed (mph) (4-1)

Notice the use of a resistor, R, because an anemometer is usually not a
grounded signal source. If the anemometer transducer were already
grounded, using R would cause a ground loop and result in erroneous
readings. Refer to Chapter 6, Analog Input, for more information about
grounded and floating signal sources.

Figure 4-3. Anemometer Wiring

Figure 4-4 shows the block diagram needed to measure the wind speed.
In this diagram, device is the number assigned to the plug-in DAQ device
during configuration. Channel is the analog input channel the anemometer
is wired to. The high limit and low limit values show the expected voltage
range. This range determines the amount of gain the DAQ device will apply.
AI Sample Channel is the DAQ subVI that acquires a single value, in this
case raw voltage. The scaling value of 20 mph/V is used to scale the input
voltage range of 0 to 10 V to the wind speed range of 0 to 200 mph
according to Equation 4-1.

Figure 4-4. Measuring Voltage and Scaling to Wind Speed
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You can simplify this block diagram by using DAQ Named Channels. Refer
to Chapter 3, Installing and Configuring Your Measurement Hardware, for
more information about DAQ Named Channels.

Figure 4-5 shows the LabVIEW diagram needed to measure the wind speed
using DAQ Named Channels. This simplifies the block diagram, because
the DAQ Named Channel remembers information about the device,
channel, gains, and the scaling equation. Again, AI Sample Channel
acquires a single value, but in this case, it returns the wind speed.

Figure 4-5. Measuring Wind Speed Using DAQ Named Channels

Averaging a Scan Example
One of the most useful and easy-to-use forms of signal conditioning is
averaging data in software. Averaging can yield a more useful reading if a
signal is rapidly changing or if there is noise on the line. Refer to
Chapter 12, DC/RMS Measurements, for more information about
averaging to improve your measurements.

Figure 4-6 shows the data acquisition system for measuring wind speed
with the addition of software averaging.

Figure 4-6. DAQ System for Measuring Wind Speed with Averaging

Figure 4-7 shows what the actual wind speed might look like over time.
Due to gusting winds, the speed values look noisy. Notice that our earlier
wind speed reading of 29 mph is a peak speed, but may give the impression
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that the wind is holding at 29 mph. A better representation might be to take
the average speed over a short period of time.

Figure 4-7. Wind Speed

Because you average in software, the hardware wiring for this approach
does not change. It is the same as in Figure 4-3. The block diagram in
Figure 4-8 shows the software to measure an average wind speed if you are
using DAQ Named Channels. Again, the DAQ Named Channel remembers
information about the device, channel, gains, and scaling. Notice that the
DAQ subVI of this example differs from the Single-Point Acquisition
Example in that it acquires a waveform instead of a single value. The
number of samples and sample rate inputs define the waveform of data
acquired. For example, if you set the number of samples to 1000 and the
sample rate to 500 (samples/sec), it takes two seconds to acquire the
1000 points. The waveform of data from AI Acquire Waveform is then
wired to the Mean subVI. The Mean subVI returns the average wind speed
for two seconds of time.

Figure 4-8. Average Wind Speed Using DAQ Named Channels

One common reason for averaging is to eliminate 50 or 60 Hz powerline
noise. The oscillating magnetic field around powerlines can induce noise
voltages on unshielded transducer wiring. Because powerline noise is
sinusoidal, the average over one period is zero. If you use a scan rate that is
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an integer multiple of the noise and average data for an integer multiple of
periods, the line noise is eliminated. One example that works for both 50
and 60 Hz is to scan at 300 scans per second and then average 30 points.
Notice that 300 is an integer multiple of both 50 and 60. One period of the
50 Hz noise is 300/50=6 points. One period of the 60 Hz noise is 300/60=5
points. Averaging 30 points is an integer multiple of both periods, so you
can ensure that you average whole periods.

How to Measure AC Voltage
The early days of high-voltage electricity were dominated by DC
applications. The constant nature of DC made it easy to measure voltage,
current, and power. The power formulas developed for DC are the
following:

and

where P is power (watts), I is current (amps), R is resistance (ohms), and V
is voltage (Volts DC).

Today most power lines deliver alternating current (AC) for home, lab, and
industrial applications. Alternating waveforms continuously increase,
decrease, and reverse polarity on a repetitive basis. This means the voltage,
current, and power are not constant values. However, it is useful to measure
voltage, current, and power such that a load connected to a 120 VAC source
develops the same amount of power as that same load connected to a
120 VDC source. For this reason, Vrms (root mean square) was developed.
With RMS, the power laws shown above work for AC. For sinusoidal
waveforms:

Since voltmeters read Vrms, the 120 VAC of a typical U.S. wall outlet
actually has a peak value of about 170 V.

P I2 R⋅=

P
V2

R
-----=

Vrms

Vpeak

2
------------=
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LabVIEW makes it easy to measure Vrms. Figure 4-9 shows the data
acquisition system for measuring Vrms.

Figure 4-9. Data Acquisition System for Vrms

Figure 4-10 shows what the actual sinusoid signal might look like.

Figure 4-10. Sinusoidal Voltage

The block diagram in Figure 4-11 shows the software to measure Vrms if
you are using DAQ Named Channels.

Figure 4-11. Vrms Using DAQ Named Channels

The DAQ subVI AI Acquire Waveform acquires a waveform. The number
of samples and sample rate define the waveform. The Basic Averaged
DC-RMS VI takes the waveform and estimates the RMS and DC
components. For a sinusoidal waveform centered about zero, this subVI
returns Vrms. For a sinusoidal waveform offset from zero, the DC value
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returns the DC shift and the RMS value returns Vrms as if the waveform
were centered about zero. One advantage of using the Basic Averaged
DC-RMS VI is that it can make good estimations with the least amount of
data. According to the Nyquist Theorem you must acquire at a rate at least
twice as fast as the signal being acquired in order to get reliable frequency
data. However, Vrms is not concerned with frequency data. It is related to the
shape of the waveform. Typically, to get a good idea of a waveform shape,
you must acquire at five to ten times the rate of the waveform. The
advantage of the Basic Averaged DC-RMS VI is that it makes a good
estimation even when acquiring at only three times the frequency of the
waveform.

This same AC voltage measurement can be made using an instrument.
Figure 4-12 shows the acquisition system for this measurement. In this
case, a stand-alone instrument is shown. However, this could also be an
instrument board that plugs directly into a PC.

Figure 4-12. Instrument Control System for Vrms

Figure 4-13 shows the block diagram to measure Vrms using the IVI class
driver VIs. In this example, the instrument is first initialized using a logical
name to create a session. Next the instrument is configured for the desired
measurement, in this case AC Volts. After configuration, the measurement
reading is taken. Finally the session is closed.

Figure 4-13. Vrms Using an Instrument
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How to Measure Current
The 4-20 mA loop has been an industry standard for many years. It is
popular because it couples a wide dynamic range with a live zero of 4 mA
for open circuit detection in a system that does not produce sparks. Other
advantages include a variety of compatible hardware, a long distance up to
2000 feet, and low cost. The 4-20 mA loop has a variety of uses including
digital communications, control applications, and reading remote sensors.
This section describes how to measure current in order to read a remote
sensor.

In this example, you measure current in order to read the fluid level in a
tank. Figure 4-14 shows a data acquisition system that could be used to do
this.

Figure 4-14. Data Acquisition System for Current

Since MIO-type DAQ devices cannot directly measure current, the voltage
is read across a precision resistor used in series with the current loop circuit.
Figure 4-15 shows the current loop wiring diagram.

Figure 4-15. Current Loop Wiring
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The purpose of this 4-20 mA current loop is for the sensor to transmit a
signal in the form of a current. In the diagram, the Level Sensor and
Remote Sensor Electronics are typically built into a single unit. An external
24 VDC supply powers the sensor. The current is regulated by the sensor
and represents the value of whatever parameter the sensor might measure,
in this case the fluid level in a tank. The DAQ device reads the voltage drop
across the 249Ω resistor Rp. Then Ohm’s Law is used to derive the current:

Because the current is 4-20 mA, and Rp is 249Ω, V ranges from 0.996 V to
4.98 V. This is within the range that DAQ devices can read. While the above
equation is useful for calculating the current, the current typically
represents a physical quantity you want to measure. In this example, the
level sensor measures 0 to 50 feet. This means 4 mA represents 0 feet and
20 mA represents 50 feet. Assuming this to be a linear relationship, it can
be described by the graph and equation shown in Figure 4-16 where L is the
tank level and I is the current.

Figure 4-16. Linear Relationship between Tank Level and Current

Using the Ohm’s Law equation and substituting 0.249 for the value of Rp,
you can derive L in terms of our measured voltage:

I mA( )
V Volts( )

Rp Kohms( )
----------------------=

L
25 V⋅

8 0.249⋅
---------------------

25
2

------–=
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The above equation can be implemented on the block diagram as shown in
Figure 4-17.

Figure 4-17. Measuring Fluid Level Without DAQ Named Channels

Alternatively, a DAQ Named Channel configured in the DAQ Channel
Wizard can handle this scaling. In this case, the LabVIEW diagram is
simplified to that of Figure 4-18.

Figure 4-18. Measuring Fluid Level Using DAQ Named Channels

How to Measure Resistance
It is simple to use either the NI 4050 or NI 4060 DMM to measure
resistance. Figure 4-19 shows an instrument control system to measure
resistance.

Figure 4-19. Instrument Control System for Resistance
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Figure 4-20 shows the LabVIEW diagram to measure resistance using the
IVI class driver VIs. Notice that this diagram is similar to Figure 4-13. The
difference is the measurement function has been changed to 2-wire
resistance.

Figure 4-20. Measuring Resistance Using an Instrument

How to Measure Temperature
A thermocouple is formed when two dissimilar metals come in contact with
each other, and a temperature related voltage is produced. Because they are
inexpensive, easy to use, and easy to obtain, thermocouples are commonly
used in science and industry. This section examines a simple approach to
measuring temperature using a thermocouple. Refer to Application
Note 043, Measuring Temperature with Thermocouples – a Tutorial,
for more information about measuring temperature using a thermocouple.
This application note can be found on our web site at
zone.ni.com/appnotes.nsf/

In this example, you will learn how to measure a single temperature value
following the diagram of Figure 4-21.

Figure 4-21. Simple Temperature System
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Figure 4-22 shows a typical wiring diagram for a thermocouple. Notice that
the resistor, R, is only used if the thermocouple is not grounded at any other
point. If, for example, the thermocouple tip were already grounded, using
R would cause a ground loop and result in erroneous readings.

Figure 4-22. Thermocouple Wiring

Figure 4-23 shows the block diagram needed to measure the temperature if
you are using DAQ Named Channels. In this case, the DAQ Named
Channel handles all gain, linearization, and cold-junction compensation.

Figure 4-23. Measuring Temperature Using DAQ Named Channels

If you do not want to use DAQ Named Channels to measure temperature,
you must write a VI that determines the gain needed for your temperature
range, read the thermocouple voltage, read the cold-junction voltage,
and convert all this information into a temperature. Refer to the
Single Point Thermocouple Measurement VI located in
examples\daq\solution\transduc.llb for an example of how to
do this. Refer to the Single Point RTD Measurement VI located in
examples\daq\solution\transduc.llb for an example of how to
measure temperature using an RTD.
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Example Oscilloscope Measurements
This section discusses how to take measurements that are typical of an
oscilloscope. The examples show how to use an MIO-type DAQ device or
an instrument to take these measurements.

How to Measure Maximum, Minimum, and Peak-to-Peak Voltage
This example assumes you have some type of signal that changes over
time. Figure 4-24 shows what your measurement system might look like.

Figure 4-24. Data Acquisition System for Minimum, Maximum, Peak-to-Peak

For this measurement, your signal might typically be repetitive, but does
not have to be in order to read the maximum, minimum, and peak-to-peak
values. The peak-to-peak value is the maximum voltage swing
(maximum – minimum). Figure 4-25 shows the LabVIEW diagram to take
these measurements.

Figure 4-25. Measuring Minimum, Maximum, and Peak-to-Peak Voltages

AI Acquire Waveform VI is called to scan data from one channel of the
DAQ device. The acquired waveform is passed to Waveform Min Max VI,
which returns the minimum and maximum values of the waveform. The
difference of these values is the peak-to-peak voltage.
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A peak-to-peak voltage measurement can also be made using an
instrument. Figure 4-26 shows the acquisition system for this
measurement. In this case, a stand-alone oscilloscope is shown. However,
this could also be an instrument board that plugs directly into a PC.

Figure 4-26. Instrument Control System for Peak-to-Peak Voltage

Figure 4-27 shows the LabVIEW diagram to measure peak-to-peak voltage
using the IVI class driver VIs.

Figure 4-27. Measuring Peak-to-Peak Voltage Using an Instrument

The example shown in Figure 4-27 uses the following VIs in order:

1. The IviScope Initialize VI initializes the scope and creates a session.

2. The IviScope Auto Setup [AS] VI senses the input signal and
automatically configures many instrument settings.

3. The IviScope Configure Channel VI sets the coupling to AC. This
removes the DC component of the signal.

4. The IviScope Read Waveform Measurement [WM] VI reads the
peak-to-peak voltage.

5. The IviScope Close VI closes the session and releases resources.
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How to Measure Frequency and Period of a Repetitive Signal

Measuring Frequency and Period Example
For this example, you need to have a repetitive signal. Our measurement
system is similar to that of Figure 4-24, except that the analysis is to
measure frequency. To get reasonable results, be aware of the Nyquist
Theorem, which states that the highest frequency that can be accurately
represented is half the sampling rate. This means that if you want to
measure the frequency of a 100 Hz signal, you will need a sampling rate of
at least 200 S/s. In practice, sampling rates of five to ten times the expected
frequencies are used. Figure 4-28 shows the block diagram to take this
measurement. Once the frequency has been determined, the period of the
signal is simply the inverse of the frequency.

Figure 4-28. Measuring Frequency and Period

In addition to sample rate, you need to determine the number of samples to
acquire. In general, more is better, but there are two things to consider. First,
a minimum of three cycles of the signal must be sampled. That means in the
100 Hz example, if the sample rate is 500 S/s, you would need to collect at
least 15 points. This is because you are sampling about five times faster
than our signal frequency. That means you sample about 5 points per cycle
of the signal. Because you need data from 3 cycles you get 5 × 3 = 15
samples. Second, the number of points you collect determines the number
of frequency “bins” your data will fall into. With more bins, the frequency
you measure might fit into one bin rather than several bins. The size of each
bin is the sampling rate divided by the number of points collected. If you
sample at 500 S/s and collect 100 points, you have bins at 5 Hz intervals.
The Extract Single Tone Information VI used in this example uses data
from the three dominant bins to determine the frequency. One rule of thumb
is to sample 5 to 10 times faster than your expected signal, and to acquire
10 or more cycles.
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Frequency also can be measured using an instrument. The instrument
control system setup is the same as Figure 4-26. Figure 4-29 shows the
block diagram for this measurement. Notice that this is like Figure 4-27
except the measurement function and output are frequency. Because
frequency measurement is inherent to the instrument, the frequency value
is not calculated in LabVIEW. Rather, it is simply returned by the
instrument.

Figure 4-29. Measuring Frequency Using an Instrument

Measuring Frequency and Period with
Filtering Example
As shown in the Measuring Frequency and Period Example, the Nyquist
frequency is the bandwidth of the sampled signal and is equal to half the
sampling frequency. But what happens to other frequency components that
might be mixed in with the signal you are trying to measure? Frequency
components below the Nyquist frequency simply appear as they are.
A frequency component above the Nyquist frequency appears aliased
between 0 and the Nyquist frequency. The aliased component is the
absolute value of the difference between the actual component and the
closest integer multiple of the sampling rate. For example, if you have a
signal with a component at 800 Hz, and you sample at 500 S/s, that
component appears aliased at

One way to eliminate aliased components is to use an analog hardware filter
prior to digitizing and analyzing for frequency information. Refer to
Chapter 16, Digital Filtering, for more information about hardware
filtering. If you want to do all of your filtering in software, you must first
sample at a rate fast enough to correctly represent the highest frequency
component contained in your signal. For this example, with the highest
component at 800 Hz, the minimum sample rate is 1600 Hz. In practice, a

800 2 500⋅( )– 200Hz=



Chapter 4 Example Measurements

LabVIEW Measurements Manual 4-18 www.ni.com

sampling rate of five to ten times faster than 800 Hz should be used.
Suppose now that the frequency you are trying to measure is around
100 Hz. You can use a lowpass Butterworth filter with a cutoff frequency
(fc) set to 250 Hz. This filters out frequencies above 250 Hz and pass
frequencies below 250 Hz. Figure 4-30 shows a lowpass filter.

Figure 4-30. Lowpass Filter

The Ideal Filter is what you want. All frequencies above the Nyquist are
rejected. The Real Filter is what you might actually be able to accomplish
with a Butterworth filter. The pass band is where Vout/Vin is close to 1.
The stop band is where Vout/Vin is close to 0. In between is the transition
region, where frequencies are gradually attenuated.

Figure 4-31 shows the block diagram to filter before measuring frequency.
Notice the Digital IIR Filter VI and the IIR filter specifications.

Figure 4-31. Measuring Frequency after Filtering
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Figure 4-32 shows what the IIR filter specifications look like on the front
panel. This is where you choose the design parameters for your filter.

Figure 4-32. Front Panel IIR Filter Specifications

In this example, the fifth order lowpass Butterworth filter is used with a
cutoff frequency of 250 Hz. The order determines how steep the transition
region will be. A higher order yields a steeper transition. However, a lower
order decreases both computation time and error. In the case of our chosen
filter, the Upper cut-off frequency, Passband ripple, and Stopband
attenuation inputs are ignored. Refer to Chapter 16, Digital Filtering,
for more information about software filtering.

Frequency with software filtering can also be measured using an
instrument. The instrument control system setup is the same as Figure 4-26.
Figure 4-33 shows the block diagram for this measurement. Notice that the
IVI subVIs called are like those of Figure 4-27. The only difference is that
IviScope Read Waveform Measurement [WM] VI has been replaced with
IviScope Read Waveform VI in order to read an array of data. The outputs
of this subVI are built into a waveform data type. The Digital IIR Filter VI
and Extract Single Tone Information VI are used as discussed earlier to
determine the frequency.
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Figure 4-33. Measuring Frequency after Filtering Using an Instrument
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Part II

DAQ Basics

This part contains information you need to use LabVIEW for data
acquisition.

Part II, DAQ Basics, contains the following chapters:

• Chapter 5, Introduction to Data Acquisition in LabVIEW, contains all
the information you should know before you start learning about
data acquisition with LabVIEW.

• Chapter 6, Analog Input, contains basic information about acquiring
data with LabVIEW, including acquiring a single point or multiple
points, triggering your acquisition, and using outside sources to
control acquisition rates.

• Chapter 7, Analog Output, contains basic information about
generating data with LabVIEW, including generating a single point
or multiple points.

• Chapter 8, Digital I/O, describes basic concepts about how to use
digital signals with data acquisition in LabVIEW, including
immediate, handshaked, and timed digital I/O.

• Chapter 9, SCXI—Signal Conditioning, contains basic information
about setting up and using SCXI modules with your data
acquisition application, special programming considerations,
common SCXI applications, and calibration information.

• Chapter 10, High-Precision Timing (Counters/Timers), describes the
different ways you can use counters with your data acquisition
application, including generating a pulse or pulses; measuring
pulse width, frequency, and period; counting events and time;
and dividing frequencies for precision timing.



© National Instruments Corporation 5-1 LabVIEW Measurements Manual

5
Introduction to Data Acquisition
in LabVIEW

This chapter explains background information about data acquisition using
National Instruments DAQ hardware and software.

Basic LabVIEW Data Acquisition Concepts
This section explains how data acquisition works with LabVIEW. Before
you start building your data acquisition (DAQ) application, you should
know some of the following basic LabVIEW DAQ concepts:

• Where to find common DAQ examples

• Where to find the DAQ VIs in LabVIEW

• How the DAQ VIs are organized

• Polymorphic DAQ VIs

• VI parameter conventions

• Default and current value conventions

• The Waveform Control

• Channel, port, and counter addressing

• Limit settings

• Other DAQ VI parameters

• How DAQ VIs handle errors

• Organization of analog data

Finding Common DAQ Examples
Refer to the examples in examples\daq for examples of many common
applications involving data acquisition in LabVIEW.

There are two ways to locate specific DAQ examples. One way is to run the
DAQ Solution Wizard. The other way is to run the Search Examples Help.
You can launch either tool directly from the LabVIEW dialog box.
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Finding the Data Acquisition VIs in LabVIEW
The Functions»Data Acquisition palette contains six subpalettes that
contain the different classes of DAQ VIs. The DAQ VIs are classified
as follows:

• Analog Input VIs

• Analog Output VIs

• Digital I/O VIs

• Counter VIs

• Calibration and Configuration VIs

• Signal Conditioning VIs

DAQ VI Organization
Most of the DAQ VI subpalettes arrange the VIs in different levels
according to their functionality. You can find some of the following
four levels of DAQ VIs within the DAQ VI subpalettes:

• Easy VIs

• Intermediate VIs

• Utility VIs

• Advanced VIs
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Figure 5-1 shows an example of a DAQ subpalette that contains all of the
available levels of DAQ VIs.

Figure 5-1. Analog Input VI Palette Organization

Easy VIs
The Easy VIs perform simple DAQ operations and typically reside in the
first row of VIs in the DAQ palettes. You can run these VIs from the front
panel or use them as subVIs in basic applications.

You need only one Easy VI to perform each basic DAQ operation. Unlike
intermediate- and advanced-level VIs, Easy VIs automatically alert you to
errors with a dialog box that allows you to stop the execution of the VI or
to ignore the error.

The Easy VIs usually are composed of Intermediate VIs, which are in turn
composed of Advanced VIs. The Easy VIs provide a basic interface with
only the most commonly used inputs and outputs. For more complex
applications, use the intermediate- or advanced-level VIs to achieve more
functionality and better performance.

1 Easy Analog Input VIs
2 Intermediate Analog Input VIs

3 Advanced Analog Input VIs
4 Analog Input Utility VIs

1

2

3

4
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Intermediate VIs
The Intermediate VIs have more hardware functionality and efficiency in
developing applications than the Easy VIs. The Intermediate VIs contain
groups of Advanced VIs, but they use fewer parameters and do not have
some of the more advanced capabilities.

Intermediate VIs give you more control over error-handling than the
Easy VIs. With each VI, you can check for errors or pass the error cluster
on to other VIs.

Note Most LabVIEW data acquisition examples shown in this manual are based on the
Intermediate VIs.

Utility VIs
The Utility VIs, found in many of the LabVIEW DAQ palettes, are also
intermediate-level VIs and thus have more hardware functionality and
efficiency in developing your application than the Easy VIs.

Advanced VIs
The Advanced VIs are the lowest-level interface to the DAQ driver.
Very few applications require the use of the Advanced VIs. Advanced VIs
return the greatest amount of status information from the DAQ driver. Use
the Advanced VIs when the Easy or Intermediate VIs do not have the inputs
necessary to control an uncommon DAQ function.

Polymorphic DAQ VIs
Some of the DAQ VIs are polymorphic. This means that they accept or
return data of various types. For example, the Easy Analog Input VIs can
return data as either a waveform or an array of scaled values. By default the
Polymorphic Analog Input VIs return data as a waveform. To change the
return type, right-click on the VI icon and choose Select Type from the
shortcut menu, as shown in Figure 5-2. The easy analog output VIs can
accept data as either a waveform or an array of scaled values. The
polymorphic analog output VIs adapt to the type of data that is connected
to them.
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Figure 5-2. Polymorphic DAQ VI Shortcut Menu

VI Parameter Conventions
In each LabVIEW DAQ VI front panel or Context Help window, the
appearance of the control and indicator labels denotes the importance of
that parameter. Control and indicator names shown in bold are required and
must be wired to a node on the block diagram for your application to run.
Parameter names that appear in plain text are optional and are not necessary
for your program to run. You rarely need to use the parameters with labels
in square brackets ([ ]). Remember that these conventions apply only to the
information in the Context Help window and on the front panel. Default
input values appear in parentheses to the right of the parameter names.

Figure 5-3 illustrates these Context Help window parameter conventions
for the AI Read One Scan VI. As the window text for this VI indicates, you
must wire the device (if you are not using channel names), channels, error
in, and iteration input parameters and the waveform data and error out
output parameters. To pass error information from one VI to another,
connect the error out cluster of the current VI to the error in cluster of
the next VI. The coupling & input config, input limits, output units, and
number of AMUX boards input parameters are optional.
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Figure 5-3. LabVIEW Context Help Window Conventions

Default and Current Value Conventions
To use the DAQ VIs, you need to know the difference between a default
input, a default setting, and a current setting. A default input is the default
value of a front panel control. When you do not wire an input to a terminal
of a VI, the default input for the control associated with that terminal passes
to the driver. The Help window shows the default inputs inside parentheses
beside the parameter names. A default setting is a default parameter value
recorded in the driver. The current setting is the value of a control at any
given moment. The current setting of a control is the default setting until
you change the value of the control.

In many cases, a control input defaults to a certain value (most often 0),
which means you can use the current setting. For example, the default input
for a parameter can be do not change the current setting, and the current
setting can be no AMUX-64T boards. If you change the value of such a
parameter, the new value becomes the current setting.

The Waveform Control
LabVIEW represents a waveform with the waveform control parameter by
default. A 1D array of waveform controls represents multiple waveforms.
The VIs, functions, and front panel objects you use to build VIs that
acquire, analyze, and display analog measurements accept or return
waveform data by default.

The waveform control contains data associated with a single waveform,
including data values and timing information.

The waveform control passes the waveform components to the VIs and
functions you use to build measurement applications. Use the waveform
VIs and functions to extract and edit the components of the waveform.
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The waveform control can be customized to have many appearances.
The DAQ VIs use two common appearances, one to reflect single-point
waveforms and one to reflect multi-point waveforms. Figure 5-4 shows
these appearances of the waveform control.

Figure 5-4. Waveform Control

Waveform Control Components
The waveform control is a special cluster of components that includes
time-domain, uniformly sampled waveform information only. Use the
waveform functions to access and manipulate individual components.

Start Time (t0)
The start time is the start time of the first point in the waveform. Use the
start time to synchronize plots on a multi-plot waveform graph or to
determine delays between waveforms. This value is not used by the Analog
Output VIs.

Delta t (dt)
Delta t is the time between successive data points in the waveform. This
value is not used by the Analog Output VIs.

Waveform Data (Y)
The waveform data is a 1D array of double-precision numbers that
represents the waveform. Generally, the number of data values in the array
corresponds directly to the number of scans taken from a data acquisition
device. Refer to the Using the Waveform Control section for more
information about acquiring and generating waveform data.

Attributes
The attribute component may be used to contain other information about
the waveform. You can set attributes with the Set Waveform Attribute
function and read attributes with the Get Waveform Attribute function.
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Using the Waveform Control
There are a number of LabVIEW VIs and primitives that accept, operate
on, and/or return waveforms. In addition, you can connect the waveform
control wires directly to many LabVIEW controls, including the graph,
chart, numeric, and numeric array controls.

The block diagram in Figure 5-5 acquires a waveform from a channel on a
data acquisition device, sends it through a Butterworth filter, and plots the
resulting waveform on a graph.

Figure 5-5. Using the Waveform Data Type

The AI Acquire Waveform VI takes a number of samples from a channel at
a specified scan rate at a particular time. The VI returns a waveform. The
probe displays the components of the waveform, which includes the time
the acquisition began (t0), the time between successive data points (dt), and
the data of a waveform acquired with each scan (Y). The Waveform FIR
Filter VI accepts the array of waveforms and automatically filters the data
(Y) of each waveform. The waveform graph then plots and displays the
waveform.

The waveform control can also be used with single point acquisitions as
shown in Figure 5-6. The AI Sample Channel VI takes a single sample from
a channel and returns a single-point waveform. The waveform contains the
value read from the channel and the time the channel was read. The chart
and the temperature controls accept the waveform and display its data. The
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Get Waveform Components function is used to extract the start time from
the waveform.

Figure 5-6. Single-Point Example

The waveform control can be used with analog output as shown in
Figure 5-7. The Sine Waveform VI generates a sine waveform. The AO
Generate Waveform VI sends the waveform to the device.

Figure 5-7. Using the Waveform Control with Analog Output

Extracting Waveform Components
Use the Get Waveform Components function to extract and manipulate the
components of a waveform you generate. The VI in Figure 5-8 uses the Get
Waveform Components function to extract the waveform data. The Negate
function negates the waveform data and plots the results to a graph.
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Figure 5-8. Extracting Waveform Components

Waveform Data on the Front Panel
On the front panel, use the Waveform control, available on the
Controls»I/O palette, or a Waveform Graph, available on the
Controls»Graph palette, to represent waveform data.

Use the Waveform control to manipulate the t0, dt, and Y components of
the waveform or display those components as an indicator. Refer to the
Waveform Control Components section for more information about each
component.

When you wire a waveform to a graph, the t0 component is the initial value
on the x-axis. The number of scans acquired and the dt component
determine the subsequent values on the x-axis. The data elements in the
Y component comprise the points on the plot of the graph.

If you want to let a user control a certain component, such as the dt
component, create a front panel control and wire it to the appropriate
component in the Build Waveform function.

The VI in Figure 5-9 continuously acquires 10,000 scans from a data
acquisition device at a scan rate of 1,000 scans per second, which began
at 7:00 p.m. You can control the ∆t of the waveform.
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Figure 5-9. Waveform Graph

The waveform data (Y) is plotted on the graph. The trigger time (t0) is
7:00:00 P.M. and is the first point on the x-axis. The ∆t of the waveform (dt)
is 1.00 millisecond, so the 10,000 scans are distributed over 10 seconds
with the last data value plotted at 7:00:10 P.M.

Channel, Port, and Counter Addressing
The Analog Input and Analog Output VIs have a channels parameter
where you can specify the channels from which the VIs read or to which
they write. The Digital Input and Output VIs have a similar parameter,
called digital channel list, and the equivalent value is called counter list
for the Counter VIs.

Note To simplify the explanation of channel addressing concepts, the channels, digital
channels, and counter list parameters are all referred to as channels in this section.

Each channel you specify in the channels parameter becomes a member of
a group. For each group, you can acquire or generate data on the channels
listed in the group. VIs scan (during acquisition) or update (during
generation) the channels in the same order they are listed. To erase a group,
pass an empty channels parameter and the group number to the VI or
assign a new channels parameter to the group. You can change groups only
at the Advanced VI level.
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DAQ Channel Name Control
The channels parameter in the Analog and Digital VIs is a DAQ Channel
Name control. If you configured your channels in the DAQ Channel
Wizard, the controls menu lists the channel names of your configured
channels. Select a channel name from the menu or type a channel name or
number into the string area of the control.

Channel Name Addressing
If you use the DAQ Channel Wizard to configure your analog and digital
channels, you can address your channels by name in the channels
parameter in LabVIEW. channels can be an array of strings or, as with the
Easy VIs, a scalar string control, as shown in Figure 5-10. If you have a
channels array, you can use one channel entry per array element, specify
the entire list in a single element, or use any combination of these two
methods. If you enter multiple channel names in channels, you must
configure all of the channels in the list for the same DAQ device. If you
configure channels with names of temperature and pressure, both of
which are measured by the same DAQ device, you can specify a list of
channels in a single element by separating them by commas—for example,
temperature,pressure. If you configure channels with names of
temp1, temp2, and temp3, you can specify a range of channels by
separating them with a colon, for example, temp1:temp3. In specifying
channel names, spelling and spaces are important, but case is not.

Figure 5-10. Channel Controls

When using channel names, you do not need to wire the device, input
limits, or input config input parameters. LabVIEW always ignores the
device input when using channel names. LabVIEW configures your
hardware in terms of your channel configuration.

In addition, LabVIEW orders and pads the channels specified in channels
as needed according to any special device requirements.
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Channel Number Addressing
If you are not using channel names to address your channels, you can
address your channels by channel numbers in the channels parameter. The
channels can be an array of strings or, as with the Easy VIs, a scalar string
control. If you have a channels array, you can use one channel entry per
array element, specify the entire list in a single element, or use any
combination of these two methods. For instance, if your channels are 0, 1,
and 2, you can specify a list of channels in a single element by separating
the individual channels by commas—for example, 0, 1, 2. Or you can
specify the range by separating the first and last channels with a colon—for
example, 0:2. Figure 5-11 shows several ways you can address channels
0, 1, and 2.

Figure 5-11. Channel String Array Controls

Some Easy and Advanced Digital VIs and Intermediate Counter VIs allow
only one port or counter to be specified.

Limit Settings
Limit settings are the maximum and minimum values of the analog
signal(s) you are measuring or generating. The pair of limit setting values
can be unique for each analog input or output channel. For analog input
applications, the limit setting values must be within the range for the
device.

Each pair of limit setting values forms a cluster. Analog output limits have
a third member, the reference source. For simplicity, LabVIEW refers to
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limit settings as a pair of values. LabVIEW uses an array of these clusters
to assign limits to the channels in your channel string array.

If you use the DAQ Channel Wizard to configure your analog input
channels, the physical unit you specified for a particular channel name is
applied to the limit settings. For example, if you configured a channel in the
DAQ Channel Wizard to have physical units of Deg C, the limit settings are
treated as limits in degrees Celsius. LabVIEW configures your hardware to
make the measurement in terms of your channel name configuration.
Unless you need to overwrite your channel name configuration, do not wire
this input. Allow LabVIEW to set it up for you.

If you are not using the DAQ Channel Wizard, the default unit applied to
the limit settings is usually volts, although the unit applied to the limit
settings can be volts, current, resistance, or frequency, depending on the
capability and configuration of your device.

The default range of the device, set in the configuration utility or by
LabVIEW according to the channel name configuration in the
DAQ Channel Wizard, is used whenever you leave the limit settings
terminal unwired or you enter 0 for your upper and lower limits.

As explained in the Channel, Port, and Counter Addressing section,
LabVIEW uses an array of strings to specify which channels belong to a
group. Also, remember LabVIEW lists one channel to as many as all of the
device channels in a single array element in the channels array. LabVIEW
also assigns all the channels listed in a channels array element the same
settings in the corresponding limit settings cluster array element.
Figure 5-12 illustrates one such case.

Figure 5-12. Limit Settings, Case 1

In this example, channels 0, 1, 2, and 3 are assigned limits of 10.00
to –10.00. Channel 4 has limits of 5.00 to –5.00. Channels 5, 6, and 7 have
limit settings of 1.00 to 0.00.
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If the limit settings cluster array has fewer elements than the channel
string array, LabVIEW assigns any remaining channels the limit settings
contained in the last entry of the limit settings cluster array. Figure 5-13
illustrates this case.

Figure 5-13. Limit Settings, Case 2

In this example, channels 0, 1, 2, and 3 have limits of 10.00 to –10.00.
There are more channels left, but the limit settings cluster array is
exhausted. Therefore, the remaining channels (4, 5, 6, and 7) are also
assigned limits of 10.00 to –10.00.

The Easy Analog Input VIs have only one pair of input limits. This pair
forms a single cluster element. If you specify the default limit settings, all
channels scanned with these VIs have identical limit settings. The Easy
Analog Output VIs do not have limit settings. All the Intermediate VIs,
both analog input and output, have the channels array and the limit
settings (or input limits) cluster array on the same VI. Assignment of
limits to channels works exactly as described above.

In analog applications, you not only specify the range of the signal, you also
must specify the range and the polarity of the device. A unipolar range is
a range containing either positive or negative values, but never both.
A bipolar range is a range that has both positive and negative values.
When a device uses jumpers or DIP switches to select its range and
polarity, you must enter the correct jumper setting in the configuration
utility.

In DAQ hardware manuals and in the configuration utility, you may find
reference to the concept of gain. Gain is the amplification or attenuation
of a signal. Most National Instruments DAQ devices have programmable
gains (no jumpers), but some SCXI modules require the use of jumpers
or DIP switches. Limit settings determine the gain for all DAQ devices used
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with LabVIEW. However, for some SCXI modules, you must enter the gain
in the configuration utility.

Other DAQ VI Parameters
The device input on analog I/O, digital I/O, and counter VIs specifies the
number the DAQ configuration software assigned to your DAQ device.
Your software assigns a unique number to each DAQ device. The device
parameter usually appears as an input to the configuration VIs. Another
common configuration VI parameter, task ID, assigns your specific
I/O operation and device a unique number that identifies it throughout
your program flow.

Some DAQ VIs perform either the device configuration or the
I/O operation, while other DAQ VIs perform both configuration and the
operation. Some of the VIs that handle both functions have an iteration
input. When your VI has the iteration set to 0, LabVIEW configures the
DAQ device and then performs the specific I/O operation. For iteration
values greater than 0, LabVIEW uses the existing configuration to perform
the I/O operation. You can improve the performance of your application
by not configuring the DAQ device every time an I/O operation occurs.
Typically, you should wire the iteration input to an iteration terminal in a
loop as shown in Figure 5-14.

Figure 5-14. Wiring the iteration Input

Wiring the iteration input this way means the device is configured only
on the first I/O operation. Subsequent I/O operations use the existing
configuration.
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Error Handling
Each Easy VI contains an error handling VI. A dialog box appears
immediately if an error occurs in an Easy VI.

Each Intermediate and Advanced VI contains an error in input cluster and
an error out output cluster, as shown in Figure 5-15. The clusters contain
a Boolean indicator that indicates whether an error occurred, the code for
the error, and source or the name of the VI that returned the error. If error
in indicates an error, the VI passes the error information to error out and
does not execute any DAQ functions.

Figure 5-15. LabVIEW Error In and Error Out Error Clusters

Organization of Analog Data
If you acquire data from more than one channel multiple times, the data
may be returned as an array of waveforms. Each waveform represents a
separate channel in the waveform array. Refer to the The Waveform
Control section for more information about waveforms.

The data also may be returned as a two-dimensional (2D) array. This
section explains the organization of analog data as a 2D array.

If you were to create a 2D array and label the index selectors on a
LabVIEW front panel, the array might look like Figure 5-16.

Figure 5-16. Example of a Basic 2D Array

The two vertically arranged boxes on the left are the row and column index
selectors for the array. The top index selects a row, and the bottom index
selects a column.
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The Analog Input VIs organize their data by columns. Each column holds
data from one channel, so selecting a column selects a channel. Selecting a
row selects a scan of data. This ordering method is often called column
major order. If you were to label your index selectors for a column major
2D array, the array might look like Figure 5-17.

Figure 5-17. 2D Array in Column Major Order

To graph a column major order 2D array, you must configure the waveform
chart or graph to treat the data as transposed by turning on this option in the
graph shortcut menu.

Note This option is dimmed until you wire the 2D array to a graph. To convert the data to
row major order, use the Transpose 2D Array function, available on the Functions»
Array palette. You also can transpose the array data from the graph by right-clicking on
the graph and selecting Transpose Array from the shortcut menu.

To extract a single channel from a column major 2D array, use the Index
Array function, available on the Functions»Array palette. You select a
column (or channel) by wiring your selection to the bottom left index input,
the Index Array function produces the entire column of data as a 1D array,
as shown in Figure 5-18.

Figure 5-18. Extracting a Single Channel from a Column Major 2D Array

Analog output buffers that contain data for more than one channel are also
column major 2D arrays. To create such an array, first make the data from
each output channel a 1D array. Then select the Build Array function on the
Functions»Array & Cluster palette. Add as many input terminals (rows)
to the Build Array terminal as you have channels of data. Wire each 1D
array to the Build Array terminal to combine these arrays into a single row
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major 2D array. Then use the Transpose 2D Array function to convert the
array to a column major array.

The finished array is ready for the AO Write VI, as shown in Figure 5-19.

Figure 5-19. Analog Output Buffer 2D Array

Where You Should Go Next
This section directs you to the chapter in this manual best suited to
answer questions about your data acquisition application. You answer
a series of questions that help determine the purpose of your application.
At first, the questions are general and then become more focused until
you reach a reference to a specific section in the manual dealing with your
type of application. The questions will guide you to the relevant sections in
the manual for your particular application.

1. What kind of Measuring Device do I use—DAQ Device or SCXI
Module?

Are you working in an environment with a lot of EMI? If you are, you
may have SCXI modules connected to your DAQ device or the parallel
port of your computer. SCXI modules can filter and isolate noise from
signals. They also can amplify low signals. SCXI modules expand the
number of channels to acquire or generate data.

DAQ devices are primarily used alone when extra signal conditioning
is not necessary.

If you are using a DAQ device, read question 2. If you are using SCXI,
go to Chapter 9, SCXI—Signal Conditioning.

2. Analog or Digital Signal Analysis?

Does your signal have two discrete values that are TTL signals? If so,
you have a digital signal. Otherwise, you have an analog signal. The
type of information you would need to know from an analog signal is
the level (discrete value), shape, and frequency content.
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3. Analog or Digital Signal Acquisition or Generation?

If you want to measure and analyze signals from a source outside the
computer, you want to acquire signals. If you want to send signals to
an outside instrument to control its operation, you want to generate
signals.

If you want to acquire analog signals, go to question 5. If you want to
generate analog signals, refer to question 6. If you want to acquire and
generate analog signals, refer to theSingle-Point Acquisition section in
Chapter 6, Analog Input.

If you want to acquire or generate digital signals, read question 4.

4. Digital or Counter Interfacing?

Digital I/O interfaces primarily with binary operations, such as turning
external equipment on or off, or sense logic states, such as the on/off
position of the switch. Counters generate individual digital pulses or
waves or count digital events, like how many times a digital signal rises
or falls in value.

If you are performing digital I/O, refer to question 9. If you need to use
counters, read question 10.

5. Single-Point or Multiple-Point Acquisition?

Do you want to acquire a signal value(s) at one time or over a period
of time at a certain rate? If you measure a signal at a given instant of
time, you are performing single-point acquisition. If you measure
signals over a period of time at a certain rate, you are performing
multiple-point or waveform acquisition.

If you want single-point acquisition, refer to theSingle-Point
Acquisition section in Chapter 6, Analog Input. If you want
multiple-point acquisition, read question 7.

6. Single-Point or Multiple-Point Generation?

Are you outputting a steady (DC) signal or are you generating a
changing signal at a certain rate? A constant or slowly changing signal
output is called single-point generation. The output of a changing
signal at a certain rate is called multiple-point or waveform generation.

If you want to perform single-point generation, refer to the
Single-Point Generation section in Chapter 7, Analog Output. If you
want multiple-point generation, refer to the Waveform Generation
(Buffered Analog Output) section in Chapter 7, Analog Output.
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7. Triggering a Signal or Using a Clock?

You can start an analog acquisition when a certain analog or digital
value occurs by triggering the acquisition.

If you want to trigger an analog acquisition, refer to the Controlling
Your Acquisition with Triggers section in Chapter 6, Analog Input.

8. Multiple-Point Acquisition with an Internal or External Clock?

Multiple-point or waveform acquisition can be done at a rate set by an
internal DAQ device clock or an external clock. The external clock is
a TTL signal produced at a certain rate.

If you want to acquire a waveform at the rate of an external signal, refer
to the Letting an Outside Source Control Your Acquisition Rate section
in Chapter 6, Analog Input. If not, read the Buffered Waveform
Acquisition section in Chapter 6, Analog Input.

9. Immediate, Handshaked, or Timed Digital I/O?

If you want your program to read the latest digital input or immediately
write a new digital output value, use non-latched (immediate) digital
I/O. When a DAQ device accepts or transfers data after a digital pulse
is received, it is called latched (handshaked) digital I/O. With latched
digital I/O, you can store the values you want to transfer in a buffer.
Only one value is transferred after each handshaked pulse. If you want
to read or write digital data (patterns) at a fixed rate using a clock
source, use timed digital I/O.

If you want to use non-latched (immediate) digital I/O, refer to the
Immediate Digital I/O section in Chapter 8, Digital I/O. If you want to
perform latched (handshaked) digital I/O, refer to the Handshaking
section in Chapter 8, Digital I/O. If you want to perform timed digital
I/O, refer to the Immediate Digital I/O section in Chapter 8, Digital
I/O.

10. Counters—Counting or Generating Digital Pulses?

If you want to generate digital pulses from a counter at a certain rate,
read the Generating a Square Pulse or Pulse Trains section in
Chapter 10, High-Precision Timing (Counters/Timers). If you want to
measure the width of a digital pulse, refer to the Measuring Pulse
Width section in Chapter 10, High-Precision Timing
(Counters/Timers). If you want to measure the frequency or period of
a digital signal, refer to the Measuring Frequency and Period section
in Chapter 10, High-Precision Timing (Counters/Timers). If you just
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want to count how many times a digital signal rises or falls, refer to the
Counting Signal Highs and Lows section in Chapter 10,
High-Precision Timing (Counters/Timers). To learn how to slow the
frequency of a digital signal, refer to the Dividing Frequencies section
in Chapter 10, High-Precision Timing (Counters/Timers).
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6
Analog Input

This chapter explains analog input for data acquisition.

Things You Should Know about Analog Input
Engineers and scientists use data acquisition to acquire the information
they need. This section describes the terms, tools, and techniques for
successfully acquiring analog data.

Defining Your Signal
Analog signals can be grouped into three categories: DC, time domain,
and frequency domain. Figure 6-1 illustrates which signals correspond to
certain types of signal information.

Figure 6-1. Types of Analog Signals

You must define a few more signal characteristics before you can begin
measuring. For example, to what is your signal referenced? How fast does
the signal vary over time?

You can treat a DC signal as a form of time domain signal. With a
slowly-varying signal, you often can acquire a single point for your
measurement. However, some DC signals might have noise, which varies
quickly. Refer to Chapter 4, Example Measurements, for more information
about handling noise in a DC signal by treating it as a time domain signal.
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For time and frequency domain signals, you acquire several points of data
at a fast scan rate. The rate you sample determines how often the
analog-to-digital conversions take place. A fast sampling rate acquires
more points in a given time and, therefore, can often form a better
representation of the original signal than a slow sampling rate.

The sampling rate you should use depends on the types of features you are
trying to find in your waveform. For example, if you are trying to detect a
quick pulse in the time domain, you must sample fast enough that you do
not miss the pulse. The time between successive scans must be smaller than
the pulse period. If you are interested in measuring the rise time of a pulse,
you must sample at an even faster rate, which depends on how quickly the
pulse rises.

If you are measuring frequency characteristics of a waveform, you often do
not need to sample as fast as you do for time domain measurements.
According to the Nyquist Theorem, you must sample at a rate greater than
twice the maximum frequency component in a signal to get accurate
frequency information about that signal. This is usually not a fast enough
rate to recreate the shape of the signal in the time domain, but it does record
the frequency information. The frequency at one half the sampling
frequency is referred to as the Nyquist frequency. Refer to the Measuring
Frequency and Period with Filtering Example section in Chapter 4,
Example Measurements, and the Data Sampling section in Chapter 11,
Introduction to Measurement Analysis in LabVIEW, for more information
about the Nyquist Theorem and the Nyquist frequency.

Signals come in two forms: referenced and non-referenced signal sources.
More often, referenced sources are said to be grounded signals, and
non-referenced sources are called floating signals.

Grounded Signal Sources
Grounded signal sources have voltage signals that are referenced to a
system ground, such as earth or a building ground. Devices that plug into a
building ground through wall outlets, such as signal generators and power
supplies, are the most common examples of grounded signal sources,
as shown in Figure 6-2.
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Figure 6-2. Grounded Signal Sources

Floating Signal Sources
Floating signal sources contain a signal, such as a voltage, that is not
connected to an absolute reference, such as earth or a building ground.
Some common examples of floating signals are batteries, battery-powered
sources, thermocouples, transformers, isolation amplifiers, and any
instrument that explicitly floats its output signal. Notice that in Figure 6-3
neither terminal of the floating source is connected to the electrical outlet
ground.

Figure 6-3. Floating Signal Sources

Now that you know how your signal is referenced, read on to learn about
the different systems available to acquire these signals.

Choosing Your Measurement System
Now that you have defined your signal, you must choose a measurement
system. You have an analog signal, so you must convert the signal with an
analog to digital converter (ADC) measurement system, which converts
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ADC bit resolution, device range, and signal range.
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Resolution
The number of bits used to represent an analog signal determines the
resolution of the ADC. You can compare the resolution on a DAQ device
to the marks on a ruler. The more marks you have, the more precise your
measurements. Similarly, the higher the resolution, the higher the number
of divisions into which your system can break down the ADC range, and
therefore, the smaller the detectable change. A 3-bit ADC divides the
range into 23 or 8 divisions. A binary or digital code between 000 and 111
represents each division. The ADC translates each measurement of the
analog signal to one of the digital divisions. Figure 6-4 shows a sine wave
digital image as obtained by a 3-bit ADC. Clearly, the digital signal does
not represent the original signal adequately, because the converter has too
few digital divisions to represent the varying voltages of the analog signal.
By increasing the resolution to 16 bits, however, the ADC’s number of
divisions increases from 8 to 65,536 (216). The ADC now can obtain an
extremely accurate representation of the analog signal.

Figure 6-4. The Effects of Resolution on ADC Precision

Device Range
Range refers to the minimum and maximum analog signal levels that the
ADC can digitize. Many DAQ devices feature selectable ranges, so you can
match the ADC range to that of the signal to take best advantage of the
available resolution. For example, in Figure 6-5, the 3-bit ADC, as shown
in the left chart, has eight digital divisions in the range from 0 to 10 V.
If you select a range of –10.00 to 10.00 V, as shown in the right chart, the
same ADC now separates a 20 V range into eight divisions. The smallest
detectable voltage increases from 1.25 to 2.50 V, and you now have a much
less accurate representation of the signal.
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Figure 6-5. The Effects of Range on ADC Precision

Signal Limit Settings
Limit settings are the maximum and minimum values of the signal you are
measuring. A more precise limit setting allows the ADC to use more
digital divisions to represent the signal. Figure 6-6 shows an example of
this theory. Using a 3-bit ADC and a device range setting of 0.00 to
10.00 V, Figure 6-6 shows the effects of a limit setting between 0 and 5 V
and 0 and 10 V. With a limit setting of 0 to 10 V, the ADC uses only four
of the eight divisions in the conversion. But using a limit setting of 0 to 5 V,
the ADC now has access to all eight digital divisions. This makes the digital
representation of the signal more accurate.

Range = 0 to 10 V

0 50 100 150 200
Time (µs)

A
m

p
lit

u
d

e
(v

o
lt

s)

111

110

101

100

011

010

001

000

8.75
10.00

7.50
6.25
5.00
3.75
2.50
1.25

0

Range = -10 to 10 V

0 50 100 150 200
Time (µs)

A
m

p
lit

u
d

e
(v

o
lt

s)

111

110

101

100

011

010

001

000

7.50
10.00

5.00
2.50

0
-2.50
-5.00
-7.50

-10.00



Chapter 6 Analog Input

LabVIEW Measurements Manual 6-6 www.ni.com

Figure 6-6. The Effects of Limit Settings on ADC Precision

Considerations for Selecting Analog Input Settings
The resolution and device range of a DAQ device determine the smallest
detectable change in the input signal. You can calculate the smallest
detectable change, called the code width, using the following formula.

Limit Settings 0 to 10 V

Limit Settings 0 to 5 V

10.00

8.75

7.5

6.25

5.00

3.75

2.50

1.25

0.00

111

110

101

100

011

010

001

000

V

10.00

8.75

7.5

6.25

5.00

3.75

2.50

1.25

0.00

V

000
001
010
011
100
101
110
111

Limit Settings 0 to 5 V

code width
device range

2resolution
----------------------------------=



Chapter 6 Analog Input

© National Instruments Corporation 6-7 LabVIEW Measurements Manual

For example, a 12-bit DAQ device with a 0 to 10 V input range detects a
2.4 mV change, while the same device with a –10 to 10 V input range
detects only a change of 4.8 mV.

A high-resolution A/D converter provides a smaller code width given the
device voltage ranges shown above.

The smaller your code width, the more accurate your measurements
will be.

There are times you must know whether your signals are unipolar or
bipolar. Unipolar signals are signals that range from 0 value to a positive
value (for example, 0 to 5 V). Bipolar signals are signals that range from a
negative to a positive value (for example, –5 to 5 V). To achieve a smaller
code width if your signal is unipolar, specify that the device range is
unipolar, as shown previously. If your signal range is smaller than the
device range, set your limit settings to values that more accurately reflect
your signal range. Table 6-1 shows how the code width of the 12-bit DAQ
devices varies with device ranges and limit settings, because your limit
settings automatically adjust the gain on your device.
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Now that you know which kind of ADC to use and what settings to use
for your signal, you can connect your signals to be measured. On most
DAQ devices, there are three different ways to configure your device to
read the signals: differential, referenced single-ended (RSE), and
nonreferenced single-ended (NRSE).

Differential Measurement System
In a differential measurement system, you do not need to connect either
input to a fixed reference, such as earth or a building ground. DAQ devices
with instrumentation amplifiers can be configured as differential
measurement systems. Figure 6-7 depicts the 8-channel differential
measurement system used in the MIO series devices. Analog multiplexers
increase the number of measurement channels while still using a single

Table 6-1. Measurement Precision for Various Device Ranges and Limit Settings
(12-Bit A/D Converter)

Device Voltage Range Limit Settings Precision1

0 to 10 V 0 to 10 V
0 to 5 V
0 to 2.5 V
0 to 1.25 V
0 to 1 V
0 to 0.1 V
0 to 20 mV

2.44 mV
1.22 mV
610 µV
305 µV
244 µV
24.4 µV
4.88 µV

–5 to 5 V –5 to 5 V
–2.5 to 2.5 V
–1.25 to 1.25 V
–0.625 to 0.625 V
–0.5 to 0.5 V
–50 to 50 mV
–10 to 10 mV

2.44 mV
1.22 mV
610 µV
305 µV
244 µV
24.4 µV
4.88 µV

–10 to 10 V –10 to 10 V
–5 to 5 V
–2.5 to 2.5 V
–1.25 to 1.25 V
–1 to 1 V
–0.1 to 0.1 V
–20 to 20 mV

4.88 mV
2.44 mV
1.22 mV
610 µV
488 µV
48.8 µV
9.76 µV

1 The value of 1 Least Significant Bit (LSB) of the 12-bit ADC. In other words, the voltage
increment corresponding to a change of 1 count in the ADC 12-bit count.
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instrumentation amplifier. For this device, the pin labeled AIGND
(the analog input ground) is the measurement system ground.

Figure 6-7. 8-Channel Differential Measurement System
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In general, a differential measurement system is preferable because it
rejects not only ground loop-induced errors, but also the noise picked up in
the environment to a certain degree. Use differential measurement systems
when all input signals meet the following criteria:

• Low-level signals (for example, less than 1 V)

• Long or non-shielded cabling/wiring traveling through a noisy
environment

• Any of the input signals require a separate ground-reference point or
return signal

An ideal differential measurement system reads only the potential
difference between its two terminals—the positive (+) and negative (–)
inputs. Any voltage present at the instrumentation amplifier inputs with
respect to the amplifier ground is called a common-mode voltage. An ideal
differential measurement system completely rejects (does not measure)
common-mode voltage, as shown in Figure 6-8.

Figure 6-8. Common-Mode Voltage
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Referenced Single-Ended Measurement System
An RSE measurement system is used to measure a floating signal, because
it grounds the signal with respect to building ground. Figure 6-9 depicts a
16-channel RSE measurement system. You should use this measurement
system only when you need a single-ended system and your device does not
work with NRSE measurement.

Figure 6-9. 16-Channel RSE Measurement System
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Nonreferenced Single-Ended Measurement System
DAQ devices often use a variant of the RSE measurement technique,
known as the NRSE measurement system. In an NRSE measurement
system, all measurements are made with respect to a common reference,
because all of the input signals are already grounded. Figure 6-10 depicts
an NRSE measurement system where AISENSE is the common reference
for taking measurements and AIGND is the system ground. All signals
must share a common reference at AISENSE.

Figure 6-10. 16-Channel NRSE Measurement System

In general, a differential measurement system is preferable because it
rejects not only ground loop-induced errors, but also the noise picked up in
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You can use single-ended measurement systems when all input signals
meet the following criteria:

• High-level signals (normally, greater than 1 V)

• Short or properly-shielded cabling/wiring traveling through a
noise-free environment (normally, less than 15 ft)

• All signals can share a common reference signal at the source

Use differential connections when your system violates any of the above
criteria.

Channel Addressing with the AMUX-64T
An AMUX-64T external multiplexer accessory expands the number of
analog input signals a DAQ device can measure. You can attach 1, 2, or 4
AMUX-64T accessories to a DAQ device. The number of AMUX
accessories used is set in the device configuration of Measurement &
Automation Explorer (Windows) or the NI-DAQ Configuration Utility
(Macintosh). Every four channels on the AMUX accessory are multiplexed
to one channel on the DAQ device. In LabVIEW, each onboard channel
corresponds to four AMUX channels on each AMUX. For example, with
one AMUX-64T, the channel string 0:1 acquires data from AMUX
channels 0 through 7, and so on. With two AMUX-64T accessories, the
channel string 0:1 acquires data from both AMUX accessories channels 0
through 7.

You also can acquire data from a single AMUX-64T channel by using the
channel string AMy!x, where x defines the channel number and y defines
the number of the desired AMUX (y = 1 if you have just one AMUX
configured). For example, AM3!8 returns channel 8 on the third configured
AMUX-64T. Refer to the Acquire 1 Pt, 1 Ch via AMUX-64T VI in the
examples\daq\anlogin\anlogin.llb for an example of acquiring
data from a single AMUX-64T channel.

Important Terms You Should Know
The following are some definitions of common terms and parameters that
you should remember when acquiring your data:

• A scan is one acquisition or reading from each channel in your channel
string.

• Number of scans to acquire refers to the number of data acquisitions
or readings to acquire from each channel in the channel string.
Number of samples is the number of data points you want to sample
from each channel.
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• The scan rate determines how many times per second LabVIEW
acquires data from channels. scan rate enables interval scanning
(a longer interval between scans than between individual channels
comprising a scan) on devices that support this feature. channel clock
rate defines the time between the acquisition of consecutive channels
in your channel string. Refer to the Letting an Outside Source Control
Your Acquisition Rate section later in this chapter for more
information about scan and channel clock rates.

Single-Point Acquisition
This section shows how you can acquire one data point from a single
channel and then one data point from each of several channels using
LabVIEW.

Single-Channel, Single-Point Analog Input
A single-channel, single-point analog input is an immediate, non-buffered
operation. In other words, the software reads one value from an input
channel and immediately returns the value. This operation does not require
any buffering or timing. Use single-channel, single-point analog input
when you need one data point from one channel. An example of this would
be if you periodically needed to monitor the fluid level in a tank. You can
connect the transducer that produces a voltage representing the fluid level
to a single channel on your DAQ device and initiate a single-channel,
single-point acquisition whenever you want to know the fluid level.

For most basic operations, use the AI Sample Channel VI, available on
the Functions»Data Acquisition»Analog Input palette. The Easy Analog
Input VI, AI Sample Channel, measures the signal attached to the channel
you specify on your DAQ device and returns the scaled value.

Note If you configured your channel in the DAQ Channel Wizard, you do not need to enter
the device or input limits. Instead, enter a channel name in the channel input, and the value
returned is relative to the physical units you specified for that channel in the DAQ Channel
Wizard. If you specify the input limits, they are treated as being relative to the physical
units of the channel. LabVIEW ignores the device input when channel names are used.
This principle applies throughout this manual.

Refer to the Acquire 1 Point from 1 Channel VI in the examples\daq\
anlogin\anlogin.llb for an example of how to use the AI Sample
Channel VI to acquire data. Open and examine its block diagram.
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The Acquire 1 Point from 1 Channel VI initiates an A/D conversion on the
DAQ device and returns the scaled value as an output. The high limit is the
highest expected level of the signals you want to measure. The low limit is
the lowest expected level of the signals you want to measure. Refer to the
Buffered Waveform Acquisition section later in this chapter for more
information about acquiring multiple points from a single channel.

Single-channel acquisition makes acquiring one channel very basic, but
what do you do if you need to take more than one channel sample? For
example, you might need to monitor the temperature of the fluid as well as
the fluid level of the tank. In this case, two transducers must be monitored.
You can monitor both transducers using a multiple-channel, single-point
acquisition in LabVIEW.

Multiple-Channel, Single-Point Analog Input
With a multiple-channel, single-point read (or scan), LabVIEW returns the
value on several channels at once. Use this type of operation when you have
multiple transducers to monitor and you want to retrieve data from each
transducer at the same time. Your DAQ device executes a scan across each
of the specified channels and returns the values when finished.

The Easy I/O VI, AI Sample Channels, acquires single values from
multiple channels. The AI Sample Channels VI performs a single A/D
conversion on the specified channels and returns the scaled values in a
waveform. The expected range for all the signals, specified by high limit
and low limit inputs, applies to all the channels. Figure 6-11 shows how to
acquire a signal from multiple channels using this VI.

Note Remember to use commas to delimit individual channels in the channel string.
Use a colon to indicate an inclusive list of channels.

Figure 6-11. Acquiring a Voltage from Multiple Channels with the AI Sample
Channels VI
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The Easy Analog Input VIs have several benefits. You need only one icon
in your block diagram to perform the task. Easy VIs require only a few
basic inputs, and they have built-in error checking. However, these VIs have
limited programming flexibility. Because Easy VIs have only a few inputs,
you cannot implement some of the more detailed features of DAQ devices,
such as triggering or interval scanning. In addition, these VIs always
reconfigure at start-up, which can slow down processing time.

When you need more speed and efficiency, use the Intermediate VIs, which
configure an acquisition only once and then continually acquire data
without re-configuring. The Intermediate VIs also offer more error
handling control, more hardware functionality, and more efficiency in
developing your application than the Easy VIs. You typically use the
Intermediate VIs to perform buffered acquisitions.

The AI Single Scan VI returns one scan of data. You also can use this VI
to read only one point if you specify one channel. Use this VI only in
conjunction with the AI Config VI.

Figure 6-12 shows a simplified block diagram for non-buffered
applications. LabVIEW calls the AI Config VI, which configures the
channels, selects the input limits (the high limit and low limit inputs in the
Easy VIs), and generates a taskID. The program passes the taskID and the
error cluster to the AI Single Scan VI, which returns the data in an array
(one point for each channel specified).

Figure 6-12. Using the Intermediate VIs for a Basic Non-Buffered Application

Refer to the Cont Acq&Chart (immediate) VI in the examples\daq\
anlogin\anlogin.llb for an example of how to program the AI Config
and AI Single Scan VIs to perform a series of single scans by using
software timing (a While Loop) and processing each scan. Open this VI
and examine its block diagram.

The advantage of using the intermediate-level VIs is that you do not have
to configure the channels every time you want to acquire data as you do
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when using the Easy VIs. To call the AI Config VI only once, put it outside
of the While Loop in your program. The AI Config VI configures channels,
selects a high/low limit, and generates a taskID. Then, the AI Config VI
passes the taskID and error cluster into the While Loop. LabVIEW calls
the AI Single Scan VI to retrieve a scan and passes the returned data to the
My Single-Scan Processing VI. With this VI, you can program any
processing needs your application calls for, such as looking for a limit to be
exceeded. The VI then passes the data through the Build Array function to
a waveform chart for display on the front panel. The Wait Until Next ms
Multiple (metronome) function controls the loop timing. After you enter a
scan rate, the application converts the value into milliseconds and passes
the converted value to the Wait Until Next ms Multiple function. The loop
then executes at the rate of scanning. The loop ends when you press the stop
button or an when error occurs. After the loop finishes, the Simple Error
Handler VI displays any errors that occurred.

The previous examples use software-timed acquisition. With this type of
acquisition, the CPU system clock controls the rate at which you acquire
data. The system clock can be interrupted by user interaction, so if you do
not need a precise acquisition rate, use software-timed analog input.

Using Analog Input/Output Control Loops
When you want to output analog data after receiving some analog input
data, use analog input/output (I/O) control loops. With control loops, this
process is repeated over and over again.

The single-point analog input and output VIs support several analog
I/O control loops at once because you can acquire analog inputs from
several different channels in one scan and write all the analog output values
with one update. You perform a single analog input call, process the analog
output values for each channel, and then perform a single analog output
call to update all the output channels.

The following sections describe the two different types of analog I/O
control loop techniques: software-timed and hardware-timed analog I/O.

Using Software-Timed Analog I/O Control Loops
With software-timed analog control loops the analog acquisition rate and
subsequent control loop rate are controlled by a software timer such as the
Wait Until Next ms Multiple timer. The acquisition is performed during
each loop iteration when the AI Single Scan VI is called and the control
loop is executed once for each time interval. Your loop timing can be
interrupted by any user interaction, which means your acquisition rate is



Chapter 6 Analog Input

LabVIEW Measurements Manual 6-18 www.ni.com

not as consistent as that which can be achieved through hardware-timed
control loops. Generally, if you do not need a precise acquisition rate for
your control loop, software timing is appropriate.

In addition to user interaction, a large number or large-sized front panel
indicators, like charts and graphs, affect control loop rates. Refreshing the
monitor screen interrupts the system clock, which controls loop rates.
Therefore, keep the number of charts and graphs to a minimum when you
are using software-timed control loops.

Refer to the Analog IO Control Loop (immed) VI in the examples\daq\
anlog_io\anlog_io.llb for an example of software-timed control
loops. Open this example VI to see how it performs software-timed analog
I/O using the AI Read One Scan and AO Write One Update VIs.

The AI Read One Scan VI configures your DAQ device to acquire data
from analog input channels 0 and 1. Once your program acquires a data
point from channels 0 and 1, it performs calculations on the data and
outputs the results through analog output channels 0 and 1. Because the
iteration count is connected to the AI Read One Scan and AO Write One
Update VIs, the application configures the DAQ device for analog input and
output only on the first iteration of the loop. The loop rate as well as
the acquisition rate is specified by loop rate. The reason why the actual
loop period is important is because user interaction affects the loop and
acquisition rate. For example, pressing the mouse button interrupts the
system clock, which controls the loop rate. If your analog acquisition rate
for control loops does not need to be consistent, use software-timed control
loops.

Refer to the examples in the examples\daq\solution\control.llb
for more control examples.

Using Hardware-Timed Analog I/O Control Loops
For more precise timing of your control loops and more precise analog
input scan rate, use hardware-timed control loops.

Refer to the Analog IO Control Loop (hw timed) VI in the examples\
daq\anlog_io\anlog_io.llb for an example of hardware-timed,
non-buffered control loops. Open and examine its block diagram.

With hardware-timed control loops, your acquisition is not interrupted by
user interaction. Hardware-timed analog input automatically places the
data in your DAQ device FIFO buffer at an interval determined by the
analog input scan rate. You can synchronize your control loop diagram to
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this precise analog input scan rate by repeatedly calling the AI Single
Scan VI to read the oldest data in the FIFO buffer.

The AI Single Scan VI returns as soon as the next scan has been acquired
by the DAQ device. If more than one scan is stored in the DAQ device FIFO
buffer when the AI Single Scan VI is called, then LabVIEW was not able
to keep up with the acquisition rate. You can detect this by monitoring the
data remaining output of the AI Single Scan VI. In other words, you have
missed at least one control loop interval. This indicates that your software
overhead is preventing you from keeping up with your hardware-timed loop
rate. In the Analog IO Control Loop (hw timed) VI, the loop too slow
Boolean indicator is set to TRUE whenever this occurs.

In this block diagram, the AI Config VI configures the device to acquire
data on channels 0 and 1. The application does not use a buffer created in
CPU memory, but instead uses the DAQ device FIFO buffer. Input limits
(also known as limit settings) affects the expected range of the input signals.
The AI Start VI begins the analog acquisition at the loop rate (scan rate)
parameter. On the first iteration of the loop, the AI Single Scan VI reads the
newest data in the FIFO buffer. Some data may have been acquired between
the execution of the AI Start and the AI Single Scan VIs. On the first
iteration of the loop, the application reads the latest data acquired between
the AI Start and the AI Single Scan VIs. On every subsequent iteration of
the loop, the application reads the oldest data in the FIFO buffer, which is
the next acquired point in the FIFO buffer.

If more than one value was stored in the DAQ device FIFO buffer when you
read it, your application was not able to keep up with the control loop
acquisition and you have not responded with one control loop interval. This
eventually leads to an error condition, which makes the loops complete.
After the application completes analog acquisition and generation, the
AI Clear VI clears the analog input task.

The block diagram of the Analog IO Control Loop (hw timed) VI also
includes a waveform chart in the control loop. This reduces your maximum
loop rate. You can speed up the maximum rate of the control loop by
removing this graph indicator.

You easily can add other processing to your analog I/O control loop by
putting the analog input, control loop calculations, and analog output in
the first frame of a sequence inside the loop, and additional processing in
subsequent frames of the sequence. Keep in mind that this additional
processing must be less than your control loop interval. Otherwise, you
will not be able to keep up with your control loop rate.
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Improving Control Loop Performance
There are some performance issues you should take into account if you plan
to have other VIs or loops run in parallel with your hardware-timed control
loop. When you call the AI Single Scan VI in a hardware-timed control
loop, the VI waits until the next scan is acquired before returning, which
means that the CPU is waiting inside the NI-DAQ driver until the scan is
acquired. Consequently, if you try to run other LabVIEW VIs or while
loops in the same block diagram in parallel with your hardware-timed
control loop, they may run more slowly or intermittently. You can reduce
this problem by putting a software delay, with the Wait (ms) VI, at the end
of your loop after you write your analog output values. Your other
LabVIEW VIs and loops can then execute during this time.

Another good technique is to poll for your analog input without waiting
in the driver. You can set the AI Single Scan VI time limit in sec to 0.
Then, the VI reads the DAQ Device FIFO buffer and returns immediately,
regardless of whether the next scan was acquired. The AI Single Scan VI
scaled data output array is empty if the scan was not yet acquired. Poll for
your analog input by using a Wait (ms) or Wait Until Next ms Multiple
function together with the AI Single Scan VI in a While Loop within your
control loop diagram. Set the wait time smaller than your control loop
interval (at least half as small). If the scaled data output array is not empty,
exit the polling loop passing out the scaled data array and execute the rest
of your control loop diagram. This method does not return data as soon as
the scan has been acquired, as in the example described previously, but
provides ample time for other VIs and loops to execute. This method is a
good technique for balancing the CPU load between several loops and VIs
running in parallel.

Refer to the examples in the examples\daq\solution\control.llb
for more control examples.

Buffered Waveform Acquisition
One way to acquire multiple data points for one or more channels is to use
the non-buffered methods described earlier in this chapter in a repetitive
manner. However, acquiring a single data point from one or more channels
over and over is very inefficient and time consuming. Also, with this
method of acquisition, you do not have accurate control over the time
between each sample or channel. You can use a data buffer in computer
memory to acquire data more efficiently.
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If you want to take more than one reading on one or more channels, acquire
your data as waveforms. There are two buffered waveform acquisition
techniques you can use depending on what you want to do with the data
after you acquire it: simple-buffered acquisition and circular-buffered
acquisition. This section explains buffered waveform acquisition and shows
these two techniques. Throughout the chapter are some basic examples of
some common DAQ applications that use these two methods.

Using Simple Buffers to Acquire Waveforms with the
Data Acquisition Input VIs

With buffered I/O, LabVIEW transfers data taken at timed intervals from
a DAQ device to a data buffer in memory. In your VI, you must specify the
number of samples to be taken and the number of channels from which
LabVIEW will take the samples. From this information, LabVIEW
allocates a buffer in memory to hold a number of data points equal to the
number of samples per channel multiplied by the number of channels. As
the data acquisition continues, the buffer fills with the data. However, the
data may not actually be accessible until LabVIEW acquires all the
samples. Once the data acquisition is complete, the data in the buffer can
be analyzed, stored to disk, or displayed on the screen by your VI.

Acquiring a Single Waveform
The easiest way to acquire a single waveform from a single channel is to
use the AI Acquire Waveform VI, as shown in Figure 6-13. Using this VI
requires you to specify a device and/or channel, the number of samples you
want to acquire from the channel, and the sample rate (measured in samples
per second). The information you enter in these parameters are included in
the waveform data.

You can programmatically set the gain by setting the high limit and the low
limit. Using only the minimal set of inputs makes programming the VI
easier, but the VI lacks more advanced capabilities, such as triggering.

Figure 6-13. Acquiring and Graphing a Single Waveform
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Acquiring Multiple Waveforms
You can acquire more than one waveform at a time with another of the Easy
Analog Input VIs, AI Acquire Waveforms. This VI also has a minimal set
of inputs, but it allows inputs of more than one channel to read and returns
an array of waveforms from all channels it reads.

To access or control an individual waveform, index the array of waveforms
with the Index Array function or use input indexing on a For or While Loop.

The VI in Figure 6-14 acquires waveforms from multiple channels and
plots the waveforms on a graph. In addition, the Index Array function
accesses the first waveform in the array and sends it to a filter, which sends
the waveform to another graph.

Figure 6-14. Acquiring and Graphing Multiple Waveforms and Filtering a
Single Waveform

The channels input for the AI Acquire Waveforms VI has a pull down
menu where you can select a channel from a list of configured named
channels. You also can type a list of channels into this input. You can set the
high limit and low limit inputs for all the channels to the same value. Like
the other Easy VIs, you cannot use any advanced programming features
with the AI Acquire Waveforms VI.

You also can acquire multiple waveforms using the Intermediate VIs.
The Intermediate VIs provide more control over your data acquisition
processes, like being able to read any part of the buffer. An example similar
to Figure 6-15 is the Acquire N Scans VI, located in labview\examples\
daq\anlogin\anlogin.llb. With the Intermediate Analog Input VIs,
you must wire a taskID to identify the DAQ operation to make sure the VIs
execute in the correct order.
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Figure 6-15. Using the Intermediate VIs to Acquire Multiple Waveforms

With these VIs, not only can you configure triggering, coupling, acquisition
timing, retrieval, and additional hardware, but you also can control when
each step of the data acquisition process occurs. With the AI Config VI,
you can configure the different parameters of the acquisition, such as the
channels to be read and the size of the buffer to use. In the AI Start VI, you
specify parameters used in your program to start the acquisition, such as the
number of scans to acquire, the rate at which your VI takes the data, and the
trigger settings. In the AI Read VI, you specify parameters to retrieve the
data from the data acquisition buffer. Then, the application calls the
AI Clear VI to deallocate all buffers and other resources used for the
acquisition by invalidating the taskID. If an error occurs in any of these
VIs, your program passes the error through the remaining VIs to the Simple
Error Handler VI, which notifies you of the error.

For many DAQ devices, the same ADC samples many channels instead of
only one. The maximum sampling rate per channel is the maximum
sampling rate of the device divided by the number of channels.

The scan rate input in all the VIs described above is the same as the
sampling rate per channel. To figure out your maximum scan rate, you
must divide the maximum sampling rate by the number of channels.

Simple-Buffered Analog Input Examples
This section contains several different examples of simple-buffered analog
input.

Simple-Buffered Analog Input with Graphing
Figure 6-16 shows how you can use the AI Acquire Waveforms VI to
acquire two waveforms from channels 0 and 1 and then display the
waveforms on separate graphs. This type of VI is useful for comparing two
or more waveforms or for analyzing how a signal looks before and after
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going through a system. In this illustration, 1,000 scans of channels 0 and
1 are taken at the rate of 5,000 scans per second. The actual scan period
output displays in the actual timebase on the X-axis of the graphs.

Figure 6-16. Simple Buffered Analog Input Example

Refer to the Acquire N Scans example VI in the examples\daq\
anlogin\anlogin.llb for an example of a simple buffered input
application that uses graphing.

Simple-Buffered Analog Input with Multiple Starts
In some cases, you might not want to acquire contiguous data, such as in
an oscilloscope application. In this case, you want to take only a specified
number of samples as a snapshot of what the input looks like periodically.
Refer to the Acquire N-Multi-Start VI in the examples\daq\
anlogin\anlogin.llb for an example using the Intermediate VIs
similar to the Acquire N Scans example, except the acquisition only occurs
each time the start button on the front panel is pressed.

This example is similar to the standard simple buffered analog input VI, but
now both the AI Start and AI Read VIs are in a While Loop, which means
the program takes a number of samples every time the While Loop iterates.

Note The AI Read VI returns 1,000 samples, taken at 5,000 samples per second, every
time the While Loop iterates. However, the duration of the iterations of the While Loop can
vary greatly. This means that, with this VI, you can control the rate at which samples are
taken, but you may not be able to designate exactly when your application starts acquiring
each set of data.
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Simple-Buffered Analog Input with a
Write to Spreadsheet File
If you want to write the acquired data to a file, there are many file formats
in which you can store the data. The spreadsheet file format is used most
often because you can read it using most spreadsheet applications for later
data graphing and analysis. In LabVIEW, you can use VIs to send data to a
file in spreadsheet format or read back data from such a file. You can find
these VIs on the Functions»File I/O palette and on the Functions»
Waveform»Waveform File I/O palette. The VI used in this example is the
Export Waveforms to Spreadsheet File VI, shown in Figure 6-17. In this
exercise, the Intermediate analog input VIs acquire an array of waveform
data, graph the data, and create a spreadsheet file containing the data.

Figure 6-17. Writing to a Spreadsheet File after Acquisition

Using Circular Buffers to Access Your Data during Acquisition
You can apply the simple buffering techniques in many DAQ applications,
but there are some applications where these techniques are not appropriate.
If you want to view, process, or log portions of your data as it is being
acquired, do not use these simple-buffered techniques. For these types of
applications, you should set up a circular buffer to store acquired data in
memory. Figure 6-18 shows how a circular buffer works. Portions of data
are read from the buffer while the buffer is being filled. Using a circular
buffer, you can set up your device to continuously acquire data in the
background while LabVIEW retrieves the acquired data.
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Figure 6-18. How a Circular Buffer Works

A circular buffer differs from a simple buffer only in how LabVIEW places
the data into it and retrieves data from it. A circular buffer is filled with data,
just as a simple buffer. However, when it gets to the end of the buffer, it
returns to the beginning and fills up the same buffer again. This means data
can read continuously into computer memory, but only a defined amount of
memory can be used. Your VI must retrieve data in blocks, from one
location in the buffer, while the data enters the circular buffer at a different
location, so that unread data is not overwritten by newer data. Because of
the buffer maintenance, you can use only the Intermediate or Advanced VIs
with this type of data acquisition.

While a circular buffer works well in many applications, there are two
possible problems that can occur with this type of acquisition: Your VI
could try to retrieve data from the buffer faster than data is placed into it,
or your VI might not retrieve data from the buffer fast enough before
LabVIEW overwrites the data into the buffer. When your VI tries to read
data from the buffer that has not yet been collected, LabVIEW waits for the
data your VI requested to be acquired and then returns the data. If your VI
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does not read the data from the circular buffer fast enough, the VI sends
back an error, advising you that some data has been overwritten and lost.

Continuously Acquiring Data from Multiple Channels
You can acquire time-sampled data continuously from one or more
channels with the Intermediate VIs. Refer to the Acquire & Process N
Scans VI in the examples\daq\anlogin\anlogin.llb for an example
using these VIs. Open this VI and examine its block diagram.

There are inputs for setting the channels, size of the circular buffer, scan
rate, and the number of samples to retrieve from the circular buffer each
time. This VI defaults to an input buffer size of 2,000 samples and
1,000 number of scans to read at a time, which means the VI reads in
half of the buffer’s data while the VI fills the second half of the buffer with
new data.

Note The number of scans to read can be any number less than the input buffer size.

If you do not retrieve data from the circular buffer fast enough, your unread
data will be overwritten by newer data. You can resolve this problem by
adjusting one of these three parameters: the input buffer size, the scan
rate, or the number of scans to read at a time. If your program overwrites
data in the buffer, then data is coming into the buffer faster than your VI can
read all of the previous buffer data, and LabVIEW returns the error code
–10846 overWriteError. If you increase the size of the buffer so that it
takes longer to fill up, your VI has more time to read data from it. If you
slow down the scan rate, you reduce the speed at which the buffer fills up,
which also gives your program more time to retrieve data. You also can
increase the number of scans to read at a time. This retrieves more data
out of the buffer each time and effectively reduces the number of times to
access the buffer before it becomes full. Check the output scan backlog to
see how many data values remain in the circular buffer after the read.

Because this uses Intermediate VIs, you also can control other parameters
such as triggering, coupling, and additional hardware.

Asynchronous Continuous Acquisition Using
DAQ Occurrences
The main advantage of acquiring data as described in the previous section
is that you are free to manipulate your data between calls to the AI Read VI.
One limitation, however, is that the acquisition is synchronous. This means
that once you call the AI Read VI, you cannot perform any other tasks until
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the AI Read VI returns your acquired data. If your DAQ device is still busy
collecting data, you will have to sit idle until it finishes. On multithreaded
platforms like Windows, this limitation can be worked around by allocating
additional threads or by changing the preferred execution system of parts
of your application.

Another alternative is to use asynchronous acquisition. You can acquire
asynchronous continuous data from multiple channels using the same
intermediate DAQ VIs by adding DAQ Occurrences. Refer to the Cont
Acq&Chart (Async Occurrence) VI in the examples\daq\
anlogin\anlogin.llb for an example of asynchronous acquisition.
Notice that it is very similar to the example described previously, the
Acquire & Process N Scans VI.

The difference is that this example uses the DAQ Occurrence Config VI
and the Wait on Occurrence function to control the reads. The first
DAQ Occurrence Config VI sets the DAQ Event. In this example the
DAQ Event is to set the occurrence every time a number of scans is
acquired equal to the value of general value A, where general value A is the
number of scans to read at a time. Inside the While Loop, the Wait on
Occurrence function sleeps in the background until the chosen DAQ Event
takes place. Notice that the timed out output from the Wait on Occurrence
function is wired to the selection terminal of the Case structure that
encloses the AI Read VI. This means that AI Read is not called until the
number of scans to read at a time have been acquired. The result is that
the While Loop is effectively put to sleep, because you do not try to read
the data until you know it has been acquired. This frees up the execution
thread to do other tasks while you are waiting for the DAQ Event. If the
DAQ Occurrence times out, the timed-out output value would be TRUE,
and AI Read would never be called. When your acquisition is complete,
DAQ Occurrence is called again to clear all occurrences.

Circular-Buffered Analog Input Examples
The only differences between the simple-buffered applications and
circular-buffered applications in the block diagram is the setting of the
number of scans to acquire input of the AI Start VI, and you must call the
AI Read VI repeatedly to retrieve your data. These changes can be applied
to many of the examples in the previous section on simple buffered analog
input. However, this section reviews the basic circular-buffered analog
input VI here and describes some other example VIs that are included with
LabVIEW.
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Basic Circular-Buffered Analog Input
Figure 6-19 shows an example VI that brings data from a channel at a rate
of 1,000 samples/s into a buffer that can hold 4,000 samples. This type of
example might be handy if you want to watch the data from a channel over
a long period of time, but you cannot store all the data in memory at once.
The AI Config VI sets up the channel specification and buffer size, then the
AI Start VI initiates the background data acquisition and specifies the rate.
Inside the While Loop, the AI Read VI repeatedly reads blocks of data from
the buffer of a size equal to either 1,000 scans or the size of the scan
backlog—whichever one is larger. The VI does this by using the
Max & Min function to determine the larger of the two values. You do not
have to use the Max & Min function in this way for the application to work,
but this function helps control the size of the scan backlog, which is how
many samples are left over in the buffer. This VI continuously reads and
displays the data from channel 0 until an error occurs or until you click the
Stop button.

Figure 6-19. Basic Circular-Buffered Analog Input Using the Intermediate VIs

Other Circular-Buffered Analog Input Examples
Refer to the VIs in the examples\daq\anlogin\anlogin.llb and the
rest of the example VIs in examples\daq\anlogin\strmdisk.llb for
many other circular-buffered analog input VIs that are included with your
LabVIEW application. The following list describes some of these VIs:

• Cont Acq & Chart (buffered) VI—Demonstrates circular-buffered
analog input similarly to the previous example, but this VI includes
other front panel inputs.
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• Cont Acq & Graph (buffered) VI—Is similar to the Cont Acq &
Chart (buffered) VI, except this VI displays data in a waveform graph.

• Cont Acq to File (binary) VI—Acquires data through
circular-buffered analog input and stores it in a specified file as binary
data. This process is more commonly called streaming to disk.

• Cont Acq to File (scaled) VI— Is similar to the previous binary VI,
with the exception that this VI writes the acquired data to a file as
scaled voltage readings rather than binary values.

• Cont Acq to Spreadsheet File VI—Continuously reads data that
LabVIEW acquires in the circular buffer and stores this data to a
specified file in spreadsheet format. You can view the data stored in a
spreadsheet file by this VI in any spreadsheet application.

Simultaneous Buffered Waveform Acquisition
and Waveform Generation

You might discover that along with your analog input acquisition, you also
want to output analog data. If so, refer to the Simultaneous Buffered
Waveform Acquisition and Generation section in Chapter 7, Analog
Output, for more information about simultaneous buffered waveform
acquisition and generation.

Controlling Your Acquisition with Triggers
The single-point and waveform acquisitions described in the previous
chapters start at random times relative to the data. However, there are times
when you need to be able to set your analog acquisition to start at a certain
time. One example is if you want to test the response of a circuit board to a
pulse input. The pulse input also can be used to tell the DAQ device to start
acquiring data. Without this input, you must start acquiring before applying
the test pulse. This is an inefficient use of computer memory and disk space
because you must allocate and use more than is necessary. Sometimes the
data you need might be closer to the front of the buffer and other times it
might be closer to the end of the buffer.

You can start an acquisition based on the condition or state of an analog
or digital signal using a technique called triggering. Generally, a trigger
is any event that starts data capture. There are two basic types of
triggering—hardware and software triggering. In LabVIEW, you can
use software triggering to start acquisitions or use it with an external
device to perform hardware triggering.
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Hardware Triggering
Hardware triggering lets you set the start time of an acquisition and gather
data at a known position in time relative to a trigger signal. External devices
produce hardware trigger signals. In LabVIEW, you specify the triggering
conditions that must be reached before acquisition begins. When the
conditions are met, the acquisition begins. You also can analyze the data
before the trigger.

There are two types of hardware triggers: digital and analog. In the
following two sections, you will learn about the necessary conditions to
start an acquisition with a digital or an analog signal.

Digital Triggering
A digital trigger is usually a transistor-transistor logic (TTL) signal having
two discrete levels: a high and a low level. When moving from high to low
or low to high, a digital edge is created. There are two types of edges: rising
and falling. You can set your analog acquisition to start as a result of the
rising or falling edge of your digital trigger signal.

In Figure 6-20, the acquisition begins after the falling edge of the
digital trigger signal. Usually, digital trigger signals are connected to
STARTTRIG*, EXTTRIG*, DTRIG, EXT TRIG IN, or PFI pins on your
DAQ device. If you want to know which pin your device has, check your
hardware manual. The STARTTRIG* and EXTTRIG* pins, which have an
asterisk after their names, regard a falling edge signal as a trigger. Make
sure you account for this when specifying your triggering conditions.

Figure 6-20. Diagram of a Digital Trigger
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or DTRIG Pins

Falling Edge of Signal
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Figure 6-21 shows a timeline of how digital triggering works for
post-triggered data acquisition. In this example, an external device sends a
trigger, or TTL signal, to your DAQ device. As soon as your DAQ device
receives the signal and your trigger conditions are met, your device begins
acquiring data.

With NI 406X hardware, start trigger pulses can be generated externally or
internally. The following start trigger pulse sources apply:

• Software start trigger

• External trigger

Figure 6-21. Digital Triggering with Your DAQ Device

Digital Triggering Examples
Refer to the Acquire N Scans Digital Trig VI in the examples\daq\
anlogin\anlogin.llb for an example of digital triggering. Open this VI
and examine its block diagram. This VI uses the Intermediate VIs to
perform a buffered acquisition, where LabVIEW stores data in a memory
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buffer during acquisition. After the acquisition completes, the VI retrieves
all the data from the memory buffer and displays it.

You must tell your device the conditions on which to start acquiring data.

For this example, the choose trigger type Boolean should be set to START
OR STOP TRIGGER. Select START & STOP TRIGGER only when
you have two triggers: start and stop. In addition, if you use a DAQ device
with PFI lines (for example, E Series devices), you can specify the trigger
signal condition in the trigger channel control in the analog chan & level
cluster.

You can acquire data both before and after a digital trigger signal.
If pretrigger scans is greater than 0, your device acquires data before the
triggering conditions are met. It then subtracts the pretrigger scans value
from the number of scans to acquire value to determine the number of
scans to collect after the triggering conditions are met. If pretrigger scans
is 0, you acquire the number of scans to acquire after the triggering
conditions are met.

Before you start acquiring data, you must specify in the trigger edge
input whether the acquisition is triggered on the rising or falling edge of
the digital trigger signal. You also can specify a value for the time limit, the
maximum amount of time the VI waits for the trigger and requested data.

The Acquire N Scans Digital Trig VI example holds the data in a memory
buffer until your device completes the acquisition. The number of data
points you need to acquire must be small enough to fit in memory. This VI
views and processes the information only after the acquisition. Refer to the
Acquire & Proc N Scans-Trig VI in the examples\daq\anlogin\
anlogin.llb for viewing and processing information during the
acquisition. Refer to the Acquire N-Multi-Digital Trig VI in the
examples\daq\anlogin\anlogin.llb if you expect multiple digital
trigger signals that start multiple acquisitions.

Analog Triggering
You connect analog trigger signals to the analog input channels—the same
channels where you connect analog data. Your DAQ device monitors the
analog trigger channel until trigger conditions are met. You configure the
DAQ device to wait for a certain condition of the analog input signal, such
as the signal level or slope (either rising or falling). Once the device
identifies the trigger conditions, it starts an acquisition.
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Note If you are using channel names configured in the DAQ Channel Wizard, the signal
level is treated as being relative to the physical units specified for the channel. For example,
if you configure a channel called temperature to have a physical unit of Deg. C, the
value you specify for the trigger signal level is relative to Deg. C. If you are not using
channel names, the signal level is treated as volts.

In Figure 6-22, the analog trigger is set to start the data acquisition on the
rising slope of the signal, when the signal reaches 3.2.

Figure 6-22. Diagram of an Analog Trigger

Figure 6-23 illustrates analog triggering for post-triggered data acquisition
using a timeline. You configure your DAQ hardware in LabVIEW to begin
taking data when the incoming signal is on the rising slope and when the
amplitude reaches 3.2. Your DAQ device begins capturing data when the
specified analog trigger conditions are met.
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Figure 6-23. Analog Triggering with Your DAQ Device

Analog Triggering Examples
Refer to the Acquire N Scans Analog Hardware Trig VI in the examples\
daq\anlogin\anlogin.llb for a common example of analog triggering
in LabVIEW. This VI uses the Intermediate VIs to perform buffered
acquisition, where data is stored in a memory buffer during acquisition.
After the acquisition completes, the VI retrieves all the data from the
memory buffer and displays it.

You must tell your device the conditions on which to start acquiring data.

In LabVIEW, you can acquire data both before and after an analog trigger
signal. If the pretrigger scans is greater than 0, your device acquires data
before the triggering conditions. It then subtracts the pretrigger scans
value from the number of scans to acquire value to determine the number
of scans to collect after the triggering conditions are met. If pretrigger
scans is 0, then the number of scans to acquire is acquired after the
triggering conditions are met.

Analog Trigger
Signal

Analog Data

DAQ Device waits until analog trigger conditions are met.
Then …

DAQ
Device

External
Device

DAQ
Device

External
Device



Chapter 6 Analog Input

LabVIEW Measurements Manual 6-36 www.ni.com

Complete the following steps before you start acquiring data.

1. Specify in the trigger slope input whether to trigger the acquisition on
the rising or falling edge of the analog trigger signal.

2. Enter the trigger channel to use for connecting the analog triggering
signal.

3. Specify the trigger level on the triggering signal needed to begin
acquisition.

After you specify the channel of the triggering signal, LabVIEW waits
until the slope and trigger level conditions are met before starting a buffered
acquisition. If you use channel names configured in the DAQ Channel
Wizard, trigger level is treated as being relative to the physical units
specified for the channel in the DAQ Channel Wizard. Otherwise,
trigger level is treated as volts.

The Acquire N Scans Analog Hardware Trig VI example, available in the
examples\daq\anlogin\anlogin.llb, holds the data in a memory
buffer until the device completes data acquisition. The number of data
points you want to acquire must be small enough to fit in memory. This VI
views and processes the information only after the acquisition. Refer to the
Acquire & Proc N Scans-Trig VI in the examples\daq\anlogin\
anlogin.llb if you need to view and process information during the
acquisition. Refer to the example Acquire N-Multi-Analog Hardware Trig
VI in the examples\daq\anlogin\anlogin.llb if you expect multiple
analog trigger signals that will start multiple acquisitions.

Software Triggering
With software triggering, you can simulate an analog trigger using
software. This form of triggering is often used in situations where hardware
triggers are not available. Another name for software triggering signals,
specifically analog signals, is conditional retrieval. With conditional
retrieval, you set up your DAQ device to collect data, but the device does
not return any data to LabVIEW unless the data meets your retrieval
conditions. LabVIEW scans the input data and performs a comparison with
the conditions, but does not store the data until it meets your specifications.
Figure 6-24 shows a timeline of events that typically occur when you
perform conditional retrieval.

The read/search position pointer traverses the buffer until it finds the scan
location where the data has met the retrieval conditions. Offset indicates
the scan location from which the VI begins reading data relative to the
read/search position. A negative offset indicates that you need pretrigger
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data (data prior to the retrieval conditions). If offset is greater than 0, you
need posttrigger data (data after retrieval conditions).

Figure 6-24. Timeline of Conditional Retrieval
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The conditional retrieval cluster of the AI Read VI specifies the analog
signal conditions of retrieval, as shown in Figure 6-25.

Figure 6-25. The AI Read VI Conditional Retrieval Cluster

Tip The actual data acquisition is started by running your VI. The conditional retrieval just
controls how data already being acquired is returned.

When acquiring data with conditional retrieval, you typically store the data
in a memory buffer, similar to hardware triggering applications. After you
start running the VI, the data is placed in the buffer. Once the retrieval
conditions have been met, the AI Read VI searches the buffer for the
desired information. As with hardware analog triggering, you specify the
analog channel of the triggering signal by specifying its channel index, an
index number corresponding to the relative order of a single channel in a
channel list. You also specify the slope (rising or falling) and the level of
the trigger signal.

Note The channel index might not be equal to the channel value. You can use the
Channel to Index VI to get the channel index for a channel. You can find this VI on the
Data Acquisition»Calibration and Configuration palette.

The AI Read VI begins searching for the retrieval conditions in the buffer
at the read/search position, another input of the AI Read VI. The offset,
a value of the conditional retrieval input cluster, is where you specify the
scan locations from which the VI begins reading data relative to the
read/search position. A negative offset indicates data prior to the retrieval
condition pretrigger data, and a positive offset indicates data after the
retrieval condition posttrigger data. The skip count input allows you to
specify the number of times the trigger conditions are met and skipped
before data is returned. The hysteresis input controls the range used to meet
the retrieval conditions. It is useful when your signal has noise that might
inadvertently trigger your acquisition. Once the slope and level conditions
on channel index have been found, the read/search position indicates the
location where the retrieval conditions were met.
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If you are using channel names configured in the DAQ Channel Wizard,
level and hysteresis are treated as being relative to the physical units
specified for the channel. If you are not using channel names, these inputs
are treated as volts.

Conditional Retrieval Examples
The Acquire N Scans Analog Software Trig VI example, available in the
examples\daq\anlogin\anlogin.llb, uses the Intermediate VIs.
Open this VI and examine its block diagram.

The main difference between this software triggering example and
hardware triggering is the use of the conditional retrieval input for the
AI Read VI. You set up the trigger channel, trigger slope, and trigger
level the same way for both triggering methods. The pretrigger scans
value is negated and connected to the offset value in the conditional
retrieval cluster of the AI Read VI. When the trigger conditions are met,
the VI returns the requested number of scans.

Letting an Outside Source Control Your Acquisition Rate
Typically, a DAQ device uses internal counters to determine the rate to
acquire data, but sometimes you might need to capture your data at the rate
of particular signals in your system. For example, you also can read
temperature channels every time a pulse occurs, which represents pressure
rising above a certain level. In this case, internal counters are inefficient for
your needs. You must control your acquisition rate by some other, external
source.

You can compare a scan of your channels to taking a snapshot of the
voltages on your analog input channels. If you set your scan rate to 10 scans
per second, you are taking 10 snapshots each second of all the channels in
your channel list. In this case, an internal clock within your device (the scan
clock) sets the scan rate, which controls the time interval between scans.

Also, remember that most DAQ devices (those that do not sample
simultaneously) proceed from one channel to the next or from one sample
to the next, depending on the channel clock rate. Therefore, the channel
clock is the clock controlling the time interval between individual channel
samples within a scan, which means the channel clock proceeds at a faster
rate than the scan clock.
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The faster the channel clock rate, the more closely in time your system
samples the channels within each scan, as shown in Figure 6-26.

Note For devices with both a scan and channel clock, lowering the scan rate does not
change the channel clock rate.

Figure 6-26. Channel and Scan Intervals Using the Channel Clock

Some DAQ devices do not have scan clocks, but rather use round-robin
scanning. Figure 6-27 shows an example of round-robin scanning.

Figure 6-27. Round-Robin Scanning Using the Channel Clock

The devices that always perform round-robin scanning include, but are not
limited to, the following:

• PC-LPM-16

• PC-LPM-16PnP

• PC-516

• DAQCard-500

• DAQCard-516

• DAQCard-700

• Lab-LC

• NI 4060

With no scan clock, the channel clock is used to switch between each
channel at an equal interval. The same delay exists among all channel
samples, as well as between the last channel of a scan and the first channel
of the next scan. For boards with scan and channel clocks, round-robin
scanning occurs when you disable the scan clock by setting the scan rate to
0 and using the interchannel delay of the AI Config VI to control your
acquisition rate.

channel interval

0 1 2 3 0 1 2 3 0 1 2 3

scan interval

channel interval

0 1 2 3 0 1 2 3 0 1 2 3
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LabVIEW is scan-clock oriented. In other words, when you select a scan
rate, LabVIEW automatically selects the channel clock rate for you.
LabVIEW selects the fastest channel clock rate that allows adequate
settling time for the ADC.

LabVIEW adds an extra 10 µs to the interchannel delay to compensate
for any unaccounted factors. However, LabVIEW does not consider this
additional delay for purposes of warnings. If you have specified a scan rate
that is adequate for acquisition but too fast for LabVIEW to apply the
10-µs delay, it configures the acquisition but does not return a warning.

You can set your channel clock rate with the interchannel delay input of
the AI Config VI, which calls the Advanced AI Clock Config VI to actually
configure the channel clock. The simplest method to select an interchannel
delay is to gradually increase the delay, or clock period, until the data
appears consistent with data from the previous delay setting.

Refer to your hardware manuals for the required setting time for your
channel clock. You also can find the interchannel delay by running the
low-level AI Clock Config VI for the channel clock with no frequency
specified.

Externally Controlling Your Channel Clock
There are times when you might need to control the channel clock
externally. The channel clock rate is the same rate at which analog
conversions occur. For instance, suppose you need to know the strain value
at an input, every time an infrared sensor sends a pulse. Most DAQ devices
have an EXTCONV* pin or a PFI pin on the I/O connector for providing
your own channel clock. For NI 406x Series devices, use the EXTRIG
input pin. This external signal must be a TTL level signal. The asterisk on
the signal name indicates that the actual conversion occurs on the falling
edge of the signal, as shown in Figure 6-28. For devices with PFI lines and
for the NI 406X Series devices, you can select either the rising edge or
falling edge using LabVIEW. With devices that have a RTSI connector,
you can get your channel clock from other National Instruments DAQ
devices.
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Figure 6-28. Example of a TTL Signal

Refer to the Acquire N Scans-ExtChanClk VI in the examples\daq\
anlogin\anlogin.llb for an example of how to set up your acquisition
for an externally controlled channel clock. The VI includes the AI Clock
Config VI and the clock source connected to the I/O connector.

You can enable external conversions by calling the advanced-level
AI Clock Config VI. Remember that the AI Clock Config VI, which is
called by the AI Config VI, normally sets internal channel delay
automatically or manually with the interchannel delay control. However,
calling the AI Clock Config VI after the AI Config VI resets the channel
clock so that it comes from an external source for external conversion.
Also, notice that the scan clock is set to 0 to disable it, allowing the channel
clock to control the acquisition rate.

Note The 5102 devices do not support external channel clock pulses, because there is no
channel clock on the device.

On most devices, external conversions occur on the falling edge of the
EXTCONV* line. Consult your hardware reference manual for timing
diagrams. On devices with PFI lines (such as E Series devices), you can set
the Clock Source Code input of AI Clock Config VI to the PFI pin with
either falling or rising edge or use the default PFI2/Convert* pin where the
conversions occur on the falling edge.

Because LabVIEW determines the length of time before the AI Read VI
times out based on the interchannel delay and scan clock rate, you
may need to force a time limit for the AI Read VI, as illustrated in the
Acquire N Scans-ExtChanClk VI described previously.

Note On the Lab-PC+ and 1200 devices, the first clock pulse on the EXTCONV* pin
configures the acquisition but does not cause a conversion. However, all subsequent pulses
cause conversions.

TTL Signal

rising edge falling edge
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Figure 6-29 shows an example of using an external scan clock to perform
a buffered acquisition.

Figure 6-29. Acquiring Data with an External Scan Clock

Externally Controlling Your Scan Clock
External scan clock control might be more useful than external channel
clock control if you are sampling multiple channels, but might not be as
obvious to find because it does not have the input on the I/O connector
labeled ExtScanClock, the way the EXTCONV* pin does.

Note Some MIO devices have an output on the I/O connector labeled SCANCLK, which is
used for external multiplexing and is not the analog input scan clock. This cannot be used
as an input.

The appropriate pin to input your external scan clock can be found in
Table 6-2.

Note Some devices do not have internal scan clocks and therefore do not support external
scan clocks. These devices include but are not limited to the following: PC-LPM-16,

Table 6-2. External Scan Clock Input Pins

Device External Scan Clock Input Pin

All E Series Devices Any PFI Pin
(Default: PF17/STARTSCAN)

Lab-PC+
1200 devices

OUT B1
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PC-LPM-16PnP, PC-516, DAQCard-500, DAQCard-516, DAQCard-700, NI 4060,
and Lab-LC.

After connecting your external scan clock to the correct pin,
set up the external scan clock in software. Refer to the Acquire N
Scans-ExtScanClk VI in the examples\daq\anlogin\anlogin.llb
for an example of how to set up the external clock in software. Two
Advanced VIs, AI Clock Config and AI Control, are used in place of the
Intermediate AI Start VI. This allows access to the clock source input. This
is necessary because it allows access to the clock source string, which is
used to identify the PFI pin to be used for the scan clock for E Series boards.
The clock source also includes the clock source code (on the front panel),
which is set to the I/O connector. The 0.0 wired to the Clock Config VI
disables the internal clock.

Remember that the which clock input of the AI Clock Config VI should be
set to scan clock (1).

Note You must divide the timebase by some number between 2 and 65,535 or you will get
a bad input value error.

Because LabVIEW determines the length of time before AI Read
times out based on the interchannel delay and scan clock rate, you
might need to force a time limit into AI Read. In the example
Acquire N Scans-ExtScanClk VI, the time limit is 5 seconds.

Externally Controlling the Scan and Channel Clocks
You can control the scan and channel clocks simultaneously. However,
make sure that you follow the proper timing. Figure 6-30 demonstrates how
you can set up your application to control both clocks.

Figure 6-30. Controlling the Scan and Channel Clock Simultaneously
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7
Analog Output

This chapter explains analog output for data acquisition.

Things You Should Know about Analog Output
Some measuring systems require that analog signals be generated by a
DAQ device. Each of these analog signals can be a steady or slowly
changing signal, or a continuously changing waveform. This section
describes how to use LabVIEW to produce all of these different types
of signals.

Single-Point Output
When the signal level at the output is more important than the rate at which
the output value changes, you need to generate a steady DC value. You can
use the single-point analog output VIs to produce this type of output. With
single-point analog output, any time you want to change the value on an
analog output channel, you must call one of the VIs that produces a single
update (a single value change). Therefore, you can change the output value
only as fast as LabVIEW calls the VIs. This technique is called software
timing. You should use software timing if you do not need high-speed
generation or the most accurate timing. Refer to the Single-Point
Generation section, later in this chapter, for more information about
single-point output.

Buffered Analog Output
Sometimes in performing analog output, the rate that your updates occur is
just as important as the signal level. This is called waveform generation, or
buffered analog output. For example, you might want your DAQ device to
act as a function generator. You can do this by storing one cycle of sine
wave data in an array and programming the DAQ device to generate the
values continuously in the array one point at a time at a specified rate. This
is known as single-buffered waveform generation. But what if you want to
generate a continually changing waveform? For example, you might have
a large file stored on disk that contains data you want to output. Because
LabVIEW cannot store the entire waveform in a single buffer, you must
continually load new data into the buffer during the generation. This
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process requires the use of circular-buffered analog output in LabVIEW.
Refer to the Waveform Generation (Buffered Analog Output) section, later
in this chapter, for more information about single or circular buffering.

Single-Point Generation
When the signal level at the output is more important than the rate at which
the output value changes, you need to generate a steady DC value. You can
use the single-point analog output VIs to produce this type of output. With
single-point analog output, any time you want to change the value on an
analog output channel, you must call one of the VIs that produces a single
update (a single value change). Therefore, you can change the output value
only as fast as LabVIEW calls the VIs. This technique is called software
timing. You should use software timing if you do not need high-speed
generation or the most accurate timing.

Single-Immediate Updates
The simplest way to program single-point updates in LabVIEW is by using
the Easy Analog Output VI, AO Update Channels. This VI writes values to
one or more output channels on the output DAQ device.

An array of values is passed as an input to the VI. The first element in the
array corresponds to the first entry in the channel string, and the second
array element corresponds to the second channel entry. If you use channel
names configured in the DAQ Channel Wizard in your channel string,
values is relative to the physical units you specify in the DAQ Channel
Wizard. Otherwise, values is relative to volts. Remember that Easy VIs
already have built-in error handling.

Refer to the Generate 1 Point on 1 Channel VI in the examples\daq\
anlogout\anlogout.llb for an example of writing values for multiple
channels. This VI generates one value for one channel.

If you want more control over the limit settings for each channel, you
also can program a single-point update using the Intermediate Analog
Output VI, AO Write One Update.

In this VI, your program passes the error information to the Simple Error
Handler VI. The iteration input optimizes the execution of this VI if you
place it in a loop. With Intermediate VIs, you gain more control over when
you can check for errors.
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Multiple-Immediate Updates
Refer to the Write N Updates example VI in the examples\daq\
anlogout\anlogout.llb for an example of a VI that performs multiple
updates. Its block diagram resembles the one shown for the AO Write One
Update VI described previously, except that the While Loop runs the subVI
repeatedly until either the error status or the stop Boolean is TRUE. You
can use the Easy Analog Output VI, AO Write One Update VI, in a loop,
but this is inefficient because the Easy I/O VIs configure the device every
time they execute. The AO Write One Update VI configures the device
only when the value of the iteration input is set to 0.

The Write N Updates example VI illustrates an immediate, software-timed
analog output VI application. This means that software timing in a loop
controls the update rate. One good reason to use immediate, software-timed
output is that your application calculates or processes output values one at
a time. However, remember that software timing is not as accurate as
hardware-timed analog output.

Waveform Generation (Buffered Analog Output)
This section shows you which VIs to use in LabVIEW to perform buffered
analog updates.

Buffered Analog Output
You can program single-buffered analog output in LabVIEW using an Easy
Analog Output VI, AO Generate Waveforms VI. This VI writes an array of
output values to the analog output channels at a rate specified by update
rate. For example, if channels consists of two channels and the
waveforms array consists of waveform data for the two channels,
LabVIEW writes values from the waveform array to the corresponding
channels at every update interval. After LabVIEW writes all the values in
the array to the channels, the VI stops. The signal level on the output
channels maintains the value of the final value row in the waveform array
until another value is generated. If you use channel names configured in the
DAQ Channel Wizard in channels, waveforms is relative to the units
specified in the DAQ Channel Wizard. Otherwise, waveforms is relative
to volts.

Easy VIs contain error handling. If an error occurs in the AO Generate
Waveforms VI, a dialog box appears displaying the error number and
description, and the VI stops running.
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As with single-point analog output, you can use the Analog Output
Utility VI, AO Waveform Gen VI, for most of your programming needs.
This VI has several inputs and outputs that the Easy I/O VI does not have.
You have the option of having the data array generated once, several times,
or continuously through the generation count input. Figure 7-1 shows an
example block diagram of how to program this VI.

Figure 7-1. Waveform Generation Using the AO Waveform Gen VI

In this example, LabVIEW generates the data in the array two times before
stopping.

The Generate N Updates example VI, available in examples\daq\

anlogout\anlogout.llb, uses the AO Waveform Gen VI. Placing this
VI in a loop and wiring the iteration terminal of the loop to the iteration
input on the VI optimizes the execution of this VI. When iteration is 0,
LabVIEW configures the analog output channels appropriately. If the
iteration is greater than 0, LabVIEW uses the existing configuration, which
improves performance. With the AO Waveform Gen VI, you also can
specify the limit settings input for each analog output channel.

If you want even more control over your analog output application, use the
Intermediate DAQ VIs, as shown in Figure 7-2.

Figure 7-2. Waveform Generation Using Intermediate VIs

With these VIs, you can set up an alternate update clock source (such as an
external clock or a clock signal coming from another device) or return the
update rate. The AO Config VI sets up the channels you specify for analog
output. The AO Write VI places the data in the buffer, the AO Start VI
begins the actual generation at the update rate, and the AO Wait VI waits
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until the waveform generation completes. Then, the AO Clear VI clears the
analog channels.

The Generate Continuous Sinewave VI, available in examples\daq\

anlogout\anlogout.llb, is similar in structure to Figure 7-2. This
example VI continually outputs a sine waveform through the channel you
specify.

Changing the Waveform during Generation: Circular-Buffered Output
When the waveform data is too large to fit in a memory buffer or is
constantly changing, use a circular buffer to output the data. You also can
use the Easy Analog Output VIs in a loop to create a circular-buffered
output; but this sacrifices efficiency because Easy VIs configure, allocate,
and deallocate a buffer every time they execute, which causes time gaps
between the data output.

Open the AO Continuous Gen VI to see one way to perform
circular-buffered analog output using the Intermediate VIs. This VI is more
efficient than the Easy Analog Output VIs in that it configures and allocates
a buffer when its iteration input is 0 and deallocates the buffer when the
clear generation input is TRUE.

With the AO Continuous Gen VI, you can configure the size of the data
buffer and the limit settings of each channel. Refer to the Basic LabVIEW
Data Acquisition Concepts section in Chapter 5, Introduction to Data
Acquisition in LabVIEW for more information about how to set limit
settings.

Refer to the Continuous Generation VI in the examples\daq\
anlogout\anlogout.llb for an example of using the AO Continuous
Gen VI. In this example, the data completely fills the buffer on the first
iteration. On subsequent iterations, new data is written into one half of the
buffer while the other half continues to output data.

To gain more control over your analog output application, use the
Intermediate VIs shown in Figure 7-3. With these VIs, you can set up an
alternate update clock source and you can monitor the update rate the VI
actually uses. The AO Config VI sets up the channels you specify for
analog output. The AO Write VI places the data in a buffer. The AO Start VI
begins the actual generation at the update rate. The AO Write VI in the
While Loop writes new data to the buffer until you click the Stop button.
The AO Clear VI clears the analog channels.
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Figure 7-3. Circular Buffered Waveform Generation Using Intermediate VIs

Refer to the Function Generator VI in the examples\daq\
anlogout\anlogout.llb for a more advanced example than the one
shown in Figure 7-3. This VI changes the output waveform on-the-fly,
responding to changing signal types (sine or square), amplitude, offset,
update rate, and phase settings on the front panel.

Eliminating Errors from Your
Circular-Buffered Application
If you get an error, –10843 underFlowError, while performing
circular-buffered output, it means your program cannot write data fast
enough to the buffer to output the data at the update rate. To solve this
problem, decrease the speed of the update rate or increase the buffer size.

Circular-Buffered Analog Output Examples
Another example VI in this library you might find helpful is the Display
and Output Acq’d File (scaled) VI.

You can use this VI in conjunction with the Cont Acq to File (scaled) VI,
available in examples\daq\anlogin\anolgin.llb. After running the
Cont Acq to File (scaled) VI and saving your acquired data to disk, you can
run the Display and Output Acq’d File (scaled) VI to generate your data
from the file you created. This example uses circular-buffered output. To
generate data at the same rate at which it was acquired, you must know the
rate at which your data was acquired, and use that as the update rate.

Sometimes in performing analog output, the rate that your updates occur is
just as important as the signal level. This is called waveform generation, or
buffered analog output. For example, you might want your DAQ device to
act as a function generator. You can do this by storing one cycle of sine
wave data in an array and programming the DAQ device to generate the
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values continuously in the array one point at a time at a specified rate. This
is known as single-buffered waveform generation. But what if you want to
generate a continually changing waveform? For example, you might have
a large file stored on disk that contains data you want to output. Because
LabVIEW cannot store the entire waveform in a single buffer, you must
continually load new data into the buffer during the generation. This
process requires the use of circular-buffered analog output in LabVIEW.

Letting an Outside Source Control Your Update Rate
DAQ devices use internal counters and timers to determine the rate of
data generation. However, you might encounter times when you need to
generate data in sync with other signals in your system. For example, you
might need to output data to a test circuit every time that test circuit emits
a pulse. In this case, internal counter/timers are inefficient for your needs.
You need to control the update rate with your own external source of
pulses.

Externally Controlling Your Update Clock
This section explains how to use these Intermediate VIs to generate data
using an external update clock.

The update clock controls the rate at which digital-to-analog conversions
occur. To control your data generation externally, you must supply this
clock signal to the appropriate pin on the I/O connector of your DAQ
device. The clock source you supply must be a TTL signal. Refer to the
Generate N Updates-ExtUpdateClk VI in the examples\daq\
anlogout\anlogout.llb for an example of this process.

To use an external update clock, you must set the clock source of the
AO Start VI to I/O connector. When you connect your external clock, you
find that different DAQ devices use different pins for this input. These input
pins are described in Table 7-1.

Table 7-1. External Update Clock Input Pins

Device External Update Clock Input Pin

All E Series Devices
with analog output

Any PFI pin
(Default: PFI5/UPDATE*)

Lab-PC+
1200 devices
AT-AO-6/10

EXTUPDATE*
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For waveform generation, you must supply an array of waveform data.
The example Generate N Updates-ExtUpdateClk VI described previously
uses data created in the Compute Waveform VI. When you run the example
VI, the data is output on channel 0 (the DAC0OUT pin) of your DAQ
device.

Supplying an External Test Clock from Your DAQ Device
To use an external update clock when you do not have an external clock
available, create an external test clock using outputs from a counter/timer
on your DAQ device, and then wire the output to your external update
clock source.

If your DAQ device has an FOUT or FREQ_OUT pin, you can generate
a 50% duty-cycle TTL pulse train using the Generate Pulse Train
on FOUT or FREQ_OUT VI, available in examples\daq\counter\

DAQ-STC.llb. The advantage of this VI is that it does not use one of the
available counters, which you might need for other reasons.

You also can use the Pulse Train VIs to create an external test clock.
These VIs are located in examples\daq\counter\DAQ-STC.llb,
examples\daq\counter\NI-TIO.llb, 

examples\daq\counter\Am9513.llb, and
examples\daq\counter\8253.llb.

Simultaneous Buffered Waveform
Acquisition and Generation

This section describes how to perform buffered waveform acquisition and
generation simultaneously on the same DAQ device.

Using E Series MIO Boards
E series devices, such as the PCI-MIO-16E-1, have separate counters
dedicated to analog input and analog output timing. For this reason, they
are the best choice for simultaneous input/output.

Software Triggered
Open the Simul AI/AO Buffered (E Series MIO) VI, available in
examples\daq\anlog_io\anlog_io.llb, and examine its block
diagram.
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This example VI uses Intermediate DAQ VIs. By following the error
cluster wire, which enters each DAQ VI on the bottom left and exits on the
bottom right, you can see that because of data dependency, the waveform
generation starts before the waveform acquisition, and each task is
configured to run continuously. This example VI is software-triggered,
because it starts via software when you click the Run button.

Once you call the AO Start and AI Start VIs, the While Loop executes.
Inside the While Loop, the AI Read VI returns acquired data from the
analog input buffer. There is not a call to the AO Write VI inside the While
Loop because it is not needed if the same data from the first AO Write VI
is regenerated continuously. To generate new data each time the While
Loop iterates, add an AO Write VI inside the While Loop. The While Loop
stops when an error occurs or you click the Stop button. Your DAQ device
resources are cleared by calling the AI Clear and AO Clear VIs after the
loop stops.

Hardware Triggered
Open the Simul AI/AO Buffered Trigger (E Series MIO) VI, available in
examples\daq\anlog_io\anlog_io.llb, and examine its block
diagram.

Although this VI is similar to the Simul AI/AO Buffered (E Series MIO)
VI described previously, it is more advanced because it uses a hardware
trigger. The waveform acquisition trigger is set up with the trigger type
input to the AI Start VI set to digital A (start), and by default this trigger is
expected on the PFI0 pin. Hardware triggering for waveform generation
requires an additional VI. The AO Trigger and Gate Config VI is an
advanced analog output VI for E Series boards only. The trigger parameters
are set using three inputs. The trigger or gate source is used to choose the
source of your trigger, such as a PFI pin or a RTSI pin. The trigger or gate
source specification is used in conjunction with the trigger or gate source
to choose which PFI or RTSI pin number to use, such as 0 through 9 for a
PFI pin. The trigger or gate condition is used to select a rising or falling
trigger edge. The default analog output trigger for this example is a rising
edge on PFI0. Because this is the same pin as the analog input trigger, the
waveform acquisition and generation start simultaneously. However, they
are not controlled by independent counter/timers, so you can run them at
different rates.
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Using Lab/1200 Boards
Lab/1200 boards, such as the Lab-PC-1200 or the DAQCard-1200, also
can perform simultaneous waveform acquisition and generation. The
approach is similar to the previous descriptions. Refer to the examples
Simul AI/AO Buffered (Lab/1200) VI and Simul AI/AO Buffered Trigger
(Lab/1200) VI located inexamples\daq\anlog_io\anlog_io.llb for
examples of how this acquisition and generation is performed.
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8
Digital I/O

This chapter explains digital I/O for data acquisition.

Things You Should Know about Digital I/O
Digital I/O interfaces often are used to control processes, generate patterns
for testing, and communicate with peripheral equipment such as heaters,
motors, and lights. Digital I/O components on DAQ devices and
SCXI modules consist of hardware parts that generate or accept binary
on/off signals, where on is typically 5 V and off is 0 V.

As shown in Figure 8-1, all digital lines are grouped into ports on DAQ
devices and banks on SCXI modules. The number of digital lines per port
or bank is specific to the particular device or module used, but most ports
or banks consist of four or eight lines. Except for the 653X (DIO-32HS) in
unstrobed mode, TIO-10, and E Series devices, the lines within the same
port or bank must all be of the same direction (must either be all input or all
output), as shown in Figure 8-1. By writing to or reading from a port, you
can simultaneously set or retrieve the states of multiple digital lines.

Figure 8-1. Digital Ports and Lines

Data latches
and drivers

Data latches
and drivers

Device or Module

Output Port

Input Port

Output Lines

Input Lines
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Types of Digital Acquisition/Generation
There are several types of digital acquisition/generation: unstrobed
(or static) and strobed (or handshaked), which includes pattern I/O. With
unstrobed digital I/O, your system updates the digital lines immediately
through software calls. With handshaked digital I/O, a device or module
accepts or transfers data after a digital pulse has been received. With pattern
I/O, data, or patterns, are written or read at fixed rate. The 653X family of
boards can perform pattern I/O.

Handshaking can be either nonbuffered or buffered. Not all devices and
modules support handshaking.

Knowing Your Digital I/O Chip
The digital I/O chips in most National Instruments DAQ devices belong to
one of three families: 653X, E Series, or 8255.

• The 653X family includes devices such as the PXI-6533 and
PCI-DIO-32HS.

• The E Series family typically has one 8-bit digital I/O port as a part of
the DAQ-STC.

• The 8255 family includes low-cost Lab/1200 devices and 650x type
boards (DIO-24 and DIO-96) which use the 8255 DIO chip.

Note Some E Series boards have more than eight digital lines. These boards typically have
an additional 8255 chip. This means that with regards to digital I/O, they belong to both the
E Series and 8255 families.

653X Family
The 653X family of digital devices uses the National Instruments
DAQ-DIO ASIC, a 32-bit general-purpose digital I/O interface specifically
designed for high performance. The 653X devices can perform unstrobed
I/O, pattern I/O, and high-speed data transfer using a wide range of
handshaked protocols. These devices also are equipped with sophisticated
trigger circuitry to start or stop the digital data transfer based on several
different types of events. These devices also feature the RTSI bus (PCI and
AT version) and PXI trigger bus (PXI) to synchronize digital and timing
signals with other devices.
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E Series Family
E Series boards have one port of eight digital I/O lines. The direction of
each line is software programmable on a per-line basis. The digital input
circuitry has an 8-bit register that can read back outgoing digital signals and
read incoming signals. These boards perform unstrobed I/O. Some E Series
boards have an additional 24 digital I/O lines provided through an
8255 PPI. For discussions in this document, these boards can be thought of
as belonging to both the E Series and 8255 families.

8255 Family
Many digital I/O boards use the 8255 programmable peripheral interface
(PPI). This PPI controls 24 bits of digital I/O and has three 8-bit ports: A,
B, and C. Each port can be programmed as input or output. Ports A and B
always are used for digital I/O, while port C can be used for I/O or
handshaking. Most boards have from 3 to 12 8-bit ports. A port width must
be a multiple of 8 bits with a maximum of 32 bits. These boards perform
unstrobed or handshaked digital I/O.

Immediate Digital I/O
This section focuses on transferring data across a single port. The most
common way to use digital lines is with unstrobed (immediate) digital I/O.
All DAQ devices and SCXI modules with digital components support
this mode.

When your program calls a function (subVI) in unstrobed digital I/O mode,
LabVIEW immediately writes or reads digital data. If the digital direction
is set to output, LabVIEW updates the digital line or port output state. If the
digital direction is set to input, LabVIEW returns the current digital line or
port value. For each function called, LabVIEW inputs or outputs only one
value on each digital line in this mode. You can completely configure port
(and for some devices, line) direction in software, and you can switch
directions repeatedly in a program.

Application examples of unstrobed digital I/O include controlling relays
and monitoring alarm states. You also can use multiple ports or groups of
ports to perform digital I/O functions. If you want to group digital ports,
you must use Intermediate or Advanced I/O VIs in LabVIEW.
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Using Channel Names
If you have configured channels using the DAQ Channel Wizard,
digital channel can consist of a digital channel name. The channel name
may refer to either a port or a line in a port. You do not need to specify
device, line, or port width because LabVIEW does not use these inputs if
a channel name is specified in digital channel.

As an alternative, digital channel can consist of a port number. The port
number specifies the port of digital lines that you will use during your
digital operation. In this case, to further define your digital operation, you
also must specify device, line, and port width where applicable.
The device input identifies the DAQ device you are using. The line input
is an individual port bit or line in the port specified by digital channel. The
port width input specifies the number of lines that are in the port you are
using.

If you are using an SCXI module for nonlatched digital I/O and you are not
using channel names, refer to the SCXI Channel Addressing section in
Chapter 9, SCXI—Signal Conditioning, for instructions on how to specify
port numbers.

The pattern or line state is the value(s) you want to read from or write to
a device. You can display pattern values in decimal (default), hexadecimal,
octal, or binary form.

Immediate I/O Using the Easy Digital VIs
You can use the Easy Digital VIs for nonlatched digital I/O. There are four
Easy I/O subVIs you can use to immediately read data from or write data
to a single digital line or to an entire port. These subVIs are available on the
Functions»Data Acquisition»Digital I/O palette. Use the Easy
Digital VIs for most digital testing purposes. All of the Easy Digital VIs
have error reporting. The following sections identify the examples you can
access for further information.

653X Family
The examples Read from 1 Dig Line(653X) VI and Write to 1 Dig
Line(653X) VI show how to use the Easy Digital I/O VIs to read from
or write to one digital line. Refer to the VIs in the examples\daq\
digio.llb for examples of how to use the Easy Digital I/O VIs. You can
write similar examples to read from or write to a single port.
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E Series Family
The examples Read 1 Pt from Dig Line(E) VI and Write 1 Pt to Dig
Line(E) VI show how to use the Easy Digital I/O VIs to read from or
write to one digital line. Refer to the VIs in the examples\daq\
digio.llb for examples of how to use the Easy Digital I/O VIs. You can
write similar examples to read from or write to a single port.

8255 Family
The examples Read from 1 Dig Line(8255) VI and Write to 1 Dig
Line(8255) VI show how to use the Easy Digital I/O VIs to read from
or write to one digital line. Refer to the VIs in the examples\daq\
digio.llb for examples of how to use the Easy Digital I/O VIs. You can
write similar examples to read from or write to a single port.

Immediate I/O Using the Advanced Digital VIs
The Advanced Digital I/O subVIs give you more programming flexibility.
Only the following three subVIs are needed to create the examples in this
section: DIO Port Config VI, DIO Port Read VI, and DIO Port Write VI.

653X Family
The examples Read from 1 Dig Port(653X) VI and Write to 1 Dig
Port(653X) VI show how to use the Advanced Digital I/O VIs to read from
or write to one digital 8-bit port. The examples Read from 2 Dig
Ports(653X) VI and Write to 2 Dig Ports(653X) VI show how to use the
Advanced Digital I/O VIs to read from or write to two separate 8-bit ports.
The examples Read from Digital Port(653X) VI and Write to Digital
Port(653X) VI show how to use the Advanced Digital I/O VIs to read from
or write to one digital port where the port width can be 8, 16, 24, or 32 bits.
Refer to the VIs in the examples\daq\digio.llb for examples of how
to use the Advanced Digital I/O VIs.

E Series Family
The examples Read from 1 Dig Port(E) VI and Write to 1 Dig Port(E) VI
show how to use the Advanced Digital I/O VIs to read from or write to
one digital 8-bit port. Refer to the VIs in the examples\daq\digio.llb
for examples of how to use the Advanced Digital I/O VIs.
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8255 Family
The examples Read from 1 Dig Port(8255) VI and Write to 1 Dig
Port(8255) VI show how to use the Advanced Digital I/O VIs to read from
or write to one digital 8-bit port. The examples Read from 2 Dig
Ports(8255) VI and Write to 2 Dig Ports(8255) VI show how to use the
Advanced Digital I/O VIs to read from or write to two separate 8-bit ports.
The examples Read from Digital Port(8255) VI and Write to Digital
Port(8255) VI show how to use the Advanced Digital I/O VIs to read from
or write to one digital port where the port width can be 8, 16, 24, or 32 bits.
Refer to the VIs in the examples\daq\digio.llb for examples of how
to use the Advanced Digital I/O VIs.

Handshaking
If you want to pass a digital pattern after receiving a digital pulse, you
should use strobed (handshaked) digital I/O. Handshaking allows you to
synchronize digital data transfer between your DAQ device and instrument.
For example, you might want to acquire an image from a scanner. The
process involves the following steps:

1. The scanner sends a pulse to your DAQ device after the image has been
scanned and it is ready to transfer the data.

2. Your DAQ device reads an 8-, 16-, or 32-bit digital pattern.

3. Your DAQ device then sends a pulse to the scanner to let it know the
digital pattern has been read.

4. The scanner sends out another pulse when it is ready to send another
digital pattern.

5. After your DAQ device receives this digital pulse, it reads the data.

6. This process repeats until all the data is transferred.

Many DAQ devices support digital handshaking, including the following:

• 653X family devices

– 6533 (DIO-32HS) devices

– DIO-32F

• 6534 devices

• 8255 family devices

– 6503 (DIO-24) devices

– 6507/6508 (DIO-96) devices

– Lab/1200 Series devices
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• E Series family devices

– MIO-16DE-10

– 6025E devices

Note Only E Series boards with more than eight digital lines—those that have an
additional 8255 chip onboard—support handshaking. These boards also are part of the
8255 family.

Note You cannot use channel names that were configured in the DAQ Channel Wizard
with handshaking.

Handshaking Lines

653X Family
The names and functions of handshaking signals vary. The DIO-32 devices
have two main handshaking lines—the REQ (request) line and the ACK
(acknowledge) line. REQ is an input indicating the external device is ready.
ACK is an output indicating the DIO-32 device is ready. Burst mode on a
6533 device also uses a third handshaking signal, PCLK (peripheral clock).

8255 Family
For 8255-based DAQ devices that perform handshaking, there are four
handshaking signals:

• Strobe Input (STB)

• Input Buffer Full (IBF)

• Output Buffer Full (OBF)

• Acknowledge Input (ACK)

You use the STB and IBF signals for digital input operations and the OBF
and ACK signals for digital output operations. When the STB line is low,
LabVIEW loads data into the DAQ device. After the data has been loaded,
IBF is high, which tells the external device that the data has been read. For
digital output, OBF is low while LabVIEW sends the data to an external
device. After the external device receives the data, it sends a low pulse back
on the ACK line. Refer to your hardware manual to determine which digital
ports you can configure for handshaking signals.
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Digital Data on Multiple Ports

653X Family
You can group multiple ports together so you can send more digital values
out at a time. For DIO-32 devices, the ports in the group determine which
handshaking lines are used. If the group includes port 0 or 1, handshaking
occurs on the group 1 handshaking lines. Otherwise, if the group consists
only of a combination of ports 2 and 3, handshaking occurs on the group 2
handshaking lines. In either case, the LabVIEW group number does not
affect which handshaking lines are used.

8255 Family
For 8255 devices, the ports in the group and the order of the ports both
affect which handshaking lines are used. If you want to group ports 0 and 1
and you list the ports in the order of 0:1, you should use the handshaking
lines associated with port 1.

In other words, always use the handshaking lines associated with the last
port in the list. So, if the ports are listed 1:0, use the handshaking lines
associated with port 0.
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For 8255-based devices that perform handshaking, such as the DIO-24 or
DIO-96, connect all the STB lines together if you are grouping ports for
digital input, as shown in Figure 8-2. Connect only the IBF line of the last
port in the port list to the other device. No connection is needed for the IBF
signals for the other ports in the port list.

Figure 8-2. Connecting Signal Lines for Digital Input
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If you group ports for digital output on an 8255-based device, connect only
the handshaking signals of the last port in the port list, as shown in
Figure 8-3.

Figure 8-3. Connecting Signal Lines for Digital Output

Types of Handshaking
Digital handshaking can be either nonbuffered or buffered. Nonbuffered
handshaking is similar to unstrobed digital I/O because LabVIEW updates
the digital lines immediately after every digital or handshaked pulse.

Note For the 6533 devices, LabVIEW returns immediately after storing data in its
FIFO buffer.

With buffered handshaking, LabVIEW stores digital values in memory
to be transferred after every handshaked pulse. Both nonbuffered and
buffered handshaking transfer one digital value after each handshaked
pulse. Use nonbuffered handshaking for basic digital applications.
Use buffered handshaking when your application requires multiple
handshaking pulses or high speeds. By using a buffer with multiple
handshaking pulses, the software spends less time reading or writing data,
leaving more time for other operations.
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Note On an AT-DIO-32F device with nonbuffered handshaking, you can group 1, 2, or
4 ports together. For buffered handshaking on the AT-DIO-32F, you can group only 2
or 4 ports together.

You can use only Intermediate or Advanced Digital I/O VIs for digital
handshaking in LabVIEW. The Intermediate I/O VIs work for most
nonbuffered and buffered digital handshaking applications. However, for
some DAQ devices, you might need a combination of Intermediate and
Advanced I/O VIs.

Nonbuffered Handshaking
Nonbuffered handshaking occurs when your program transfers one digital
value after receiving a digital pulse on the handshaking lines. LabVIEW
does not store these digital values in computer memory. You should use
nonbuffered handshaking when you expect only a few digital handshaking
pulses. For multiple-pulsed or high-speed applications, you should use
buffered handshaking.

653X Family
The example Dig Word Handshake In(653X) VI shows how to read
nonbuffered data using handshaking. The example Dig Word Handshake
Out(653X) VI shows how to write nonbuffered data using handshaking.
Refer to the VIs in the examples\daq\digio.llb for examples of how
to read nonbuffered data using handshaking.

8255 Family
The example Dig Word Handshake In(8255) VI shows how to read
nonbuffered data using handshaking. The example Dig Word Handshake
Out(8255) VI shows how to write nonbuffered data using handshaking.
Refer to the VIs in the examples\daq\digio.llb for examples of how
to read nonbuffered data using handshaking.

Buffered Handshaking
With buffered handshaking, you can store multiple points in computer
memory. You also can access data as it is being acquired, through the read
location and scan backlog terminals of the DIO Read subVI. Use this
technique if multiple pulses are expected on the handshaking lines.
Buffered handshaking comes in several forms: simple, iterative, and
circular. You can use simple and iterative buffered handshaking on all
DAQ devices that support handshaking. You can perform circular-buffered
handshaking only on 6533 devices.
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Simple-Buffered Handshaking
You can think of a simple buffer as a storage place in computer memory,
where buffer size equals the number of updates multiplied by the number
of ports. With simple-buffered handshaking, one or more ports can be used
to read or write data. All of the data is handshaked into the buffer before it
is read into LabVIEW.

653X Family
The examples Buff Handshake Input VI and Buff Handshake Output VI
show how to read or write data, respectively, using buffered handshaking.
Refer to the VIs in the examples\daq\digio.llb for examples of how
to read or write data using buffered handshaking.

The examples Burst Mode Input VI and Burst Mode Output VI demonstrate
the use of the burst-mode protocol for maximum device throughput. Refer
to the VIs in the examples\daq\digio.llb for examples of how to use
the burst-mode protocol.

8255 Family
The example Dig Buf Handshake In(8255) VI shows how to read buffered
data using handshaking. The example Dig Buf Handshake Out(8255) VI
shows how to write buffered data using handshaking. Refer to the VIs in
the examples\daq\digio.llb for examples of how to read buffered
data using handshaking.

Iterative-Buffered Handshaking
Iterative-buffered handshaking sets up a buffer the same way as
simple-buffered handshaking. With iterative-buffered handshaking, one or
more ports can be used to read or write data. What differs between
iterative-buffered handshaking and simple-buffered handshaking is that
with iterative handshaking, data is read from the buffer before the buffer
has been filled. This allows you to see data as it is acquired as opposed to
waiting until all the data has been handshaked into the buffer. It also may
free up processor time spent waiting for the buffer to fill.

653X Family
The example Dig Buf Hand Iterative(653X) VI shows how to read data as
it is being handshaked into a buffer.
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8255 Family
The example Dig Buf Hand Iterative(8255) VI shows how to read data as
it is being handshaked into a buffer. Another example, Dig Buf Hand
Occur(8255) VI, also uses iterative reads. This example, which works
only on the Windows platform, also shows how to use DAQ Occurrences
to search for specific bit patterns in a port. Refer to the VIs in the
examples\daq\digio.llb for examples of reading data as it is being
handshaked into a buffer.

Circular-Buffered Handshaking
A circular buffer differs from a simple buffer only in the way your program
places the data into it and retrieves data from it. A circular buffer fills
with data the same as a simple buffer, but when it reaches the end of the
buffer LabVIEW returns to the beginning of the buffer and fills up the
same buffer again. Use simple-buffered handshaking when you have a
predetermined number of values to acquire or generate. Use
circular-buffered handshaking when you want to acquire or generate data
continuously.

Circular-buffered handshaking is similar to simple-buffered handshaking in
that both types of handshaking place data in a buffer. However, a
circular-buffer application returns to the beginning of the buffer when it
reaches the end and fills the same buffer again.

Note Circular-buffered handshaking works only on 653X devices.

The examples Cont Handshake Input VI and Cont Handshake Output VI
show how to read or write data respectively, using a circular buffer to
implement continuous-buffered handshaking. Refer to the VIs in the
examples\daq\digio.llb for examples of reading and writing data
using a circular buffer.

Pattern I/O
This section describes pattern I/O, which is also known as pattern
generation. Pattern I/O implies reading or writing digital data (or patterns)
at a fixed rate. This mode is especially useful when you want to
synchronize digital I/O with other events. For example, you might want to
synchronize or time stamp digital data with analog data being acquired by
another device.
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Digital I/O timing can be controlled by one of the following methods:

• Onboard clock on 653X (DIO-32HS) devices

• User-supplied clock

• Change detection mode (input only), where a pattern is acquired
whenever there is a state transition on one of the data lines

There are two general categories of timed digital I/O:

• With Finite Timed Digital I/O, a predetermined number of patterns are
acquired or generated at a rate controlled by one of the timing sources
discussed above.

• With Continuous Timed Digital I/O, digital data is continuously
acquired or generated until the user stops the process. The rate can be
controlled by one of the timing sources discussed above.

Finite Pattern I/O
In finite pattern I/O mode, LabVIEW allocates a single buffer of computer
memory large enough to hold all the patterns. Optionally, you can use
triggering in this mode of digital I/O.

Finite Pattern I/O without Triggering
In this mode, the start and/or stop of the digital I/O process is not controlled
by an external trigger event. Instead, it initiates as soon as the VI is run.

The Buffered Pattern Input VI and Buffered Pattern Output VI show how
to perform finite pattern I/O. In these examples, the 653X onboard clock is
programmed to the clock frequency value when the clock source
parameter on the VI front panel is set to internal. A user-supplied clock is
used when the clock source is set to external. Refer to the VIs in
examples\daq\digio.llb for examples of how to perform finite pattern
I/O.

The Change Detection Input VI reads in a fixed number of patterns, where
each pattern is read in when there is a state transition on one of the data
lines. Further, the line mask parameter can be used to selectively monitor
transitions only on certain lines. Refer to the VIs in the examples\daq\
digio.llb for examples of how to read in a fixed number of patterns.

The Multi Board Synchronization VI shows how to synchronize two
653X devices to acquire data simultaneously. Refer to the VIs in the 
examples\daq\digio.llb for examples of how to synchronize two
6533 devices.
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Finite Pattern I/O with Triggering
You can use triggering to control the start and/or stop of the digital I/O
process. The trigger event can be one of the following:

• Rising edge of a digital pulse

• Falling edge of a digital pulse

• Pattern match trigger, where the trigger event occurs when data on the
lines being monitored matches a specified pattern

• Pattern not match trigger, where the trigger event occurs when data on
the lines being monitored differs from a specified pattern

The Buffered Pattern Input-Trig VI, Buffered Pattern Output-Trig VI,
and Start & Stop Trig VI show how to use the triggering features on the
653X devices. Refer to the VIs in the examples\daq\digio.llb for
examples of how to use the triggering features.

Continuous Pattern I/O
In this mode, digital data is continuously acquired or generated until the
user stops the process. The data is stored in a circular buffer in memory in
order to reuse finite computer memory resources.

Circular buffering for input works in the following manner. While the
buffer is being filled by data acquired from the board, LabVIEW reads data
out of the buffer for processing, for example, to save to disk or update
screen graphics. When the buffer is filled, the operation resumes at the
beginning of the buffer. In this manner, continuous data collection and
processing can be sustained indefinitely, assuming your application can
retrieve and process data faster than the buffer is being filled. A similar
buffering technique is used when generating digital output data
continuously.

The Cont Pattern Input VI, Cont Change Detection Input VI, and Cont
Pattern Output VI show how to continuously acquire or generate digital
data. Refer to the VIs in the examples\daq\digio.llb for examples of
how to continuously acquire or generate digital data.
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9
SCXI—Signal Conditioning

SCXI is a highly expandable signal conditioning system. This chapter
describes the basic concepts of signal conditioning, the setup procedure for
SCXI hardware, the hardware operating modes, the procedure for software
installation and configuration, the special programming considerations for
SCXI in LabVIEW, and some common SCXI applications.

Things You Should Know about SCXI

What Is Signal Conditioning?
Transducers can generate electrical signals to measure physical
phenomena, such as temperature, force, sound, or light. Table 9-1 lists
some common transducers.

Table 9-1. Phenomena and Transducers

Phenomena Transducer

Temperature Thermocouples
Resistance temperature detectors (RTDs)
Thermistors
Integrated circuit sensor

Light Vacuum tube photosensors
Photoconductive cells

Sound Microphone

Force and pressure Strain gauges
Piezoelectric transducers
Load cells

Position
(displacement)

Potentiometers
Linear voltage differential transformer
(LVDT)
Optical encoder
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To measure signals from transducers, you must convert them into a form
that a DAQ device can accept. For example, the output voltage of most
thermocouples is very small and susceptible to noise. Therefore, you may
need to amplify and/or filter the thermocouple output before digitizing it.
The manipulation of signals to prepare them for digitizing is called signal
conditioning. Common types of signal conditioning include the following:

• Amplification

• Linearization

• Transducer excitation

• Isolation

• Filtering

Fluid flow Head meters
Rotational flowmeters
Ultrasonic flowmeters

pH pH electrodes

Table 9-1. Phenomena and Transducers (Continued)

Phenomena Transducer
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Figure 9-1 shows some common types of transducers/signals and the
required signal conditioning for each.

Figure 9-1. Common Types of Transducers/Signals and Signal Conditioning

Amplification
The most common type of signal conditioning is amplification. Amplify
electrical signals to improve the digitized signal accuracy and to reduce
noise.

For the highest possible accuracy, amplify the signal so the maximum
voltage swing equals the maximum input range of the ADC, or digitizer.
Your system should amplify low-level signals at the DAQ device or at the
SCXI module located nearest to the signal source, as shown in Figure 9-2.
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Figure 9-2. Amplifying Signals near the Source to Increase
Signal-to-Noise Ratio (SNR)

Tip Use shielded cables or a twisted pair of cables. By minimizing wire length, you can
minimize noise the lead wires pick up. Also, keep signal wires away from AC power cables
and monitors to reduce 50 or 60 Hz noise.

If you amplify the signal at the DAQ device, the signal is measured and
digitized with noise that may have entered the lead wires. However, if you
amplify the signal close to the signal source with an SCXI module, noise
has a less destructive effect on the signal. In other words, the digitized
representation is a better reflection of the original low-level signal. Refer to
Application Note 025, Field Wiring and Noise Considerations for Analog
Signals for more information about analog sin gals. You can access this
note from the National Instruments Developer Zone, zone.ni.com.

Linearization
Many transducers, such as thermocouples, have a nonlinear response to
changes in the physical phenomena being measured. LabVIEW can
linearize the voltage levels from transducers, so the voltages can be scaled
to the measured phenomena. LabVIEW provides simple scaling functions
to convert voltages from strain gauges, RTDs, thermocouples, and
thermistors.

Transducer Excitation
Signal conditioning systems can generate excitation for some transducers.
Strain gauges and RTDs require external voltage and currents, respectively,
to excite their circuitry into measuring physical phenomena. This type of
excitation is similar to a radio that needs power to receive and decode audio
signals. Several plug-in DAQ devices and SCXI modules, including the
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SCXI-1121 and SCXI-1122 modules, provide the necessary excitation for
transducers.

Isolation
Another common way to use SCXI is to isolate the transducer signals from
the computer for safety purposes. When the signal being monitored
contains large voltage spikes that could damage the computer or harm the
operator, do not connect the signal directly to a DAQ device without some
type of isolation.

You also can use isolation to ensure that measurements from the DAQ
device are not affected by differences in ground potentials. When the DAQ
device and the signal are not referenced to the same ground potential, a
ground loop can occur. Ground loops can cause an inaccurate
representation of the measured signal. If the potential difference between
the signal ground and the DAQ device ground is large, damage can even
occur to the measuring system. Using isolated SCXI modules eliminates
the ground loop and ensures that the signals are accurately measured.

Filtering
Signal conditioning systems can filter unwanted signals or noise from the
signal you are trying to measure. You can use a noise filter on low-rate
(or slowly changing) signals, such as temperature, to eliminate
higher-frequency signals that can reduce signal accuracy. A common use
of a filter is to eliminate the noise from a 50 or 60 Hz AC power line. A
lowpass filter of 4 Hz, which exists on several SCXI modules, is suitable
for removing the 50 or 60 Hz AC noise from signals sampled at low rates.
A lowpass filter eliminates all signal frequency components above the
cutoff frequency. Many SCXI modules have lowpass filters that have
software-selectable cutoff frequencies from 10 Hz to 25 kHz.

Hardware and Software Setup for Your SCXI System
SCXI hardware conditions signals close to the signal source and increases
the number of analog and digital signals that a DAQ device can analyze.
With PC-compatible computers, you can configure SCXI in two ways—a
front-end signal conditioning system for plug-in DAQ devices, or an
external data acquisition and control system. Furthermore, when SCXI is
configured as an external data acquisition and control system, you can
connect it to the parallel port of the computer using an SCXI-1200, or the
serial port of the computer using either an SCXI-2000 remote chassis or an
SCXI-2400 remote communications module in an SCXI-100X chassis.
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For Macintosh computers, you can use SCXI hardware only as a front-end
signal conditioning system for plug-in DAQ devices. Figure 9-3
demonstrates these configurations.

Figure 9-3. SCXI System

Figure 9-4 shows the components of an SCXI system. An SCXI system
consists of an SCXI chassis that houses signal conditioning modules,
terminal blocks that plug directly into the front of the modules, and a cable
assembly that connects the SCXI system to a plug-in DAQ device or the
parallel or serial port of a computer. If you are using SCXI as an external
DAQ system where there are no plug-in DAQ devices, you can use the
SCXI-1200 module, which is a multifunction analog, digital, and timing
I/O (counters) module. The SCXI-1200 can control several SCXI signal
conditioning modules installed in the same chassis. The functionality of the
SCXI-1200 module is similar to the plug-in 1200 series devices.
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Figure 9-4. Components of an SCXI System

Note For information on how to set up each module and transducer, consult your hardware
user manuals and the Getting Started with SCXI manual.

How do you transfer data from the SCXI chassis to the DAQ device or
parallel or serial port? Figure 9-5 shows a diagram of an SCXI chassis.
When you use SCXI as a front-end signal conditioning system, the analog
and digital bus backplane, also known as the SCXIbus, transfers analog
and/or digital data to the DAQ device. Some of the analog and digital lines
on the DAQ device are reserved for SCXI chassis communication.

SCXI

1140

SCXI

1140

SCXI-1001

MAINFRAME

SCXI

Terminal
Blocks

Signal
Conditioning
and/or
DAQ Modules

SCXI
Chassis

SCXI Cable
Assembly
(or Parallel
Port Cable)

Plug-in
DAQ Device
(Optional)

Personal
Computer



Chapter 9 SCXI—Signal Conditioning

LabVIEW Measurements Manual 9-8 www.ni.com

Figure 9-5. SCXI Chassis

When you use SCXI as an external DAQ system, only some of the digital
I/O lines of the DAQ device are reserved for SCXI chassis communication
when other modules are present. The DAQ device digitizes any analog
input data and transfers it back to the computer through the parallel or
serial port.

Note When using remote SCXI, be aware of the sampling rate limitations from the data
being sent over the serial port. To reduce delays in serial port communication, National
Instruments recommends that you use the fastest baud rate possible for the serial port of
your computer. If you have a 16550 or compatible universal asynchronous
receiver-transceiver (UART), you can use baud rates up to 57,600 baud. If you have an
8250 or compatible UART, you can use only up to 19,200 baud.

SCXI Operating Modes
The SCXI operating mode determines the way that DAQ devices
access signals. There are two basic operating modes for SCXI modules,
multiplexed and parallel. You designate the mode in the operating mode
input in Measurement & Automation Explorer or the configuration utility.
Also, you may have to set up jumpers on the module for the correct
operating mode. Check your SCXI module user manual for more
information.
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Note National Instruments recommends that you use the multiplexed mode for most
purposes, because this allows all channels on all modules to be accessed with a single DAQ
device. Parallel mode can offer faster I/O for some modules, particularly the digital
modules, but you would need a DAQ device for each module in the chassis.

Multiplexed Mode for Analog Input Modules
When an analog input module operates in multiplexed mode, all of its
input channels are multiplexed to one module output. When you cable a
DAQ device to a multiplexed analog input module, the DAQ device has
access to multiplexed output of that module, as well as all other modules
in the chassis through the SCXIbus. The analog input VIs route the
multiplexed analog signals on the SCXIbus for you transparently. So, if
you operate all modules in the chassis in multiplexed mode, you need to
cable only one of the modules directly to the DAQ device.

Note MIO/AI devices, and Lab-PC+ and 1200 devices support multiple-channel and
multiple-scan acquisitions in multiplexed mode. The Lab-LC, LPM devices, and
DAQCard-700 support only single-channel or single-scan acquisitions in multiplexed
mode.

When you connect a DAQ device to a multiplexed module, the multiplexed
output of the module (and all other multiplexed modules in the chassis)
appears at analog input channel 0 of the DAQ device by default.

Multiplexed Mode for the SCXI-1200 (Windows)
In multiplexed mode, the SCXI-1200 can access the analog signals on the
SCXIbus. The DAQ VIs can multiplex the channels of analog input
modules and send them on the SCXIbus. This means that if you configure
the SCXI-1200 for multiplexed mode, you can read the multiplexed output
from other SCXI analog input modules in the chassis.

Note The SCXI-1200 reads analog input module channels configured only in multiplexed
mode, not in parallel mode.

Make sure that you change the jumper in the SCXI-1200 to the ground
position to connect the SCXI-1200 and SCXIbus grounds together. Refer to
your SCXI user manual for more information about connecting the
SCXI-1200 and SCXIbus grounds.
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Multiplexed Mode for Analog Output Modules
Because LabVIEW communicates with the multiplexed modules over the
SCXIbus backplane, you need to cable only one multiplexed module in
each chassis to a DAQ device to communicate with any multiplexed
modules in the chassis.

Multiplexed Mode for Digital and Relay Modules
Multiplexed mode is referred to as serial mode in the digital and relay
module hardware manuals. When you operate your digital or relay module
in multiplexed mode, LabVIEW communicates the module channel states
serially over the SCXIbus backplane.

Parallel Mode for Analog Input Modules
When an analog input module operates in parallel mode, the module
sends each of its channels directly to a separate analog input channel of the
DAQ device cabled to the module. You cannot multiplex parallel outputs
of a module on the SCXIbus. You must cable a DAQ device directly to a
module in parallel mode to access its input channels. In this configuration,
the number of channels available on the DAQ device limits the total
number of analog input channels. In some cases, however, you can cable
more than one DAQ device to separate modules in an SCXI chassis. For
example, you can use two AT-MIO-16E-2 devices operating in parallel
mode and cable each one to a separate SCXI-1120 module in the chassis.

By default, when a module operates in parallel mode, the module sends its
channel 0 output to differential analog input channel 0 of the DAQ device,
the channel 1 output to analog input channel 1 of the DAQ device, and
so on.

When you use the analog input VIs, specify the correct onboard channel for
each parallel SCXI channel. If you are using a range of SCXI channels,
LabVIEW assumes the onboard channel numbers match the SCXI channel
numbers.

Parallel Mode for the SCXI-1200 (Windows)
In parallel mode, the SCXI-1200 reads only its own analog input channels.
The SCXI-1200 does not have access to the analog bus on the SCXI
backplane in parallel mode. You should use parallel mode if you are not
using other SCXI analog input modules in the chassis with the SCXI-1200.
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Parallel Mode for Digital Modules
When you operate a digital module in parallel mode, the digital lines on
your DAQ device directly drive the individual digital channels on your
SCXI module. You must cable a DAQ device directly to every module
operated in parallel mode.

You may want to use parallel mode instead of multiplexed mode for faster
updating or reading of the SCXI digital channels. For the fastest
performance in parallel mode, you can use the appropriate onboard port
numbers instead of the SCXI channel string syntax in the digital VIs.

Note If you are using a 6507/6508 (DIO-96) or an AT-MIO-16DE-10 device, you also can
operate a digital module in parallel mode using the digital ports on the second half of the
NB5 or R1005050 ribbon cable (lines 51–100). Therefore, the DIO-96 can operate two
digital modules in parallel mode, one module using the first half of the ribbon cable (lines
1–50), and another module using the second half of the ribbon cable (lines 51–100).

SCXI Software Installation and Configuration
After you assemble your SCXI system, you must run Measurement &
Automation Explorer or the configuration utility to enter your SCXI
configuration. LabVIEW needs the configuration information to program
your SCXI system correctly.

Special Programming Considerations for SCXI
When you want LabVIEW to acquire data from SCXI analog input
channels, you use the analog input VIs in the same way that you acquire
data from onboard channels. You also read and write to your SCXI relays
and digital channels using the digital VIs in the same way that you read and
write to onboard digital channels. You can write voltages to your SCXI
analog output channels using the analog output VIs. The following sections
describe special programming considerations for SCXI in LabVIEW,
including channel addressing, gains (limit settings), and settling time.

Note This section does not apply if you use the DAQ Channel Wizard to
configure your channels. On Windows, the DAQ Channel Wizard is part of
Measurement & Automation Explorer. If you use the DAQ Channel Wizard, you
address SCXI channels the same way you address onboard channels—by specifying
the channel name(s). LabVIEW configures your hardware by selecting the best input
limits and gain for the named channel based on the channel configuration.
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SCXI Channel Addressing
If you operate a module in parallel mode, you can specify an SCXI channel
either by specifying the corresponding onboard channels or by using the
SCXI channel syntax described in this section. If you operate the modules
in multiplexed mode, you must use the SCXI channel syntax.

An SCXI channel number has four parts: the onboard channel (optional),
the chassis ID, the module number, and the module channel.

In the following table of examples, x is any chassis ID, y is any module
number, a is any module channel, and b is any module channel greater
than a. z is the onboard channel from which the conditioned data is
retrieved. If you operate in multiplexed mode, analog input channel 0 reads
the data from the first cabled chassis. If you use VXI-SC submodules,
LabVIEW ignores the onboard channel, because VXI-DAQ provides a
special channel for retrieving data from submodules.

The channel input for DAQ VIs is either a string (with the Easy I/O VIs)
or an array of strings. Each string value can list the channels for only one
module. With the array structure for channel values, you can list the
channels for several modules. Therefore, for one scanning operation, you
can scan several modules. You can scan an arbitrary number of channels for
each module, but you must scan the channels of each module in
consecutive, ascending order.

Note You do not need the SCXI channel string syntax to access channels on the
SCXI-1200 module. Use 0 for channel 0, 1 for channel 1, and so on. The SCXI-1200
module is identified by its logical device number.

Channel List Element Channel Specified

obz!scx!mdy!a Channel a on the module in slot y of the
chassis with ID x is multiplexed into
onboard channel z.

obz!scx!mdy!a:b Channels a through b inclusive on the
module in slot y of the chassis with ID x

are multiplexed into onboard channel z.

obz!scx!mdy!(a,b,c) Channels a, b, andc (nonconsecutive) on
the module in slot y of the chassis with
ID x are multiplexed into onboard
channel z. (Only supported on certain
SCXI modules such as the SCXI-1125.)
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Note When you connect any type of SCXI module to a DAQ device, certain analog input
and digital lines on the DAQ device are reserved for SCXI control. On MIO Series devices,
lines 0, 1, and 2 are unavailable for general-purpose digital I/O. On MIO E Series devices,
lines 0, 1, 2, and 4 are unavailable for general-purpose digital I/O.

For the fastest performance in parallel mode on digital modules, use the
appropriate onboard port numbers instead of the SCXI channel string
syntax in the digital VIs.

SCXI Gains
SCXI modules provide higher analog input gains than those available on
most DAQ plug-in devices.

Enter the gain jumper settings in Measurement & Automation Explorer or
the NI-DAQ Configuration utility for each channel on each module with
jumpered gains. LabVIEW stores these gain settings and uses them to scale
the input data. When you use the input limits control of the analog input
VIs, LabVIEW chooses onboard gains that complement the jumpered
SCXI gains to achieve the given input limits as closely as possible.

For analog input modules with programmable gains, LabVIEW uses the
gain setting you enter in Measurement & Automation Explorer or the
NI-DAQ Configuration utility for each module as the default gain for that
module. LabVIEW uses the default gain for the module whenever you leave
the input limits terminal to the analog input VIs unwired, or if you enter 0
for your upper and lower input limits.

When you use the input limits to specify non-zero limits for a module with
programmable gains, LabVIEW chooses the most appropriate SCXI gain
for the given limits. LabVIEW selects the highest SCXI gain possible for
the given limits, and then selects additional DAQ device gains if necessary.

If your module has programmable gains and only one gain for all channels
and you are using an MIO/AI DAQ device, you can specify different input
limits for channels on the same module by splitting up your channel range
over multiple elements of the channel array, and using a different set
of input limits for each element. LabVIEW selects one module gain
suitable for all of the input limits for that module, then chooses different
MIO/AI gains to achieve the different input limits. The last three examples
in Table 9-2 illustrate this method. The last example shows a channel list
with two modules.
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You can open the AI Hardware Config VI to see the gain selection. After
running this VI, the group channel settings cluster array at the right side
of the panel shows the settings for each channel. The gain indicator
displays the total gain for the channel, which is the product of the SCXI
gain and the DAQ device gain, and the actual limit settings. The group
channel settings cluster array also shows the input limits for each channel.

LabVIEW scales the input data as you specified, unless you select binary
data only. Therefore, the gains are transparent to the application. You can
specify the input signal limits and let LabVIEW do the rest.

SCXI Settling Time
The filter and gain settings of your SCXI modules affect the settling time
of the SCXI amplifiers and multiplexers. Always enter your jumpered filter
settings and your jumpered gain settings (if applicable) in the Measurement
& Automation Explorer or the configuration utility. LabVIEW uses the
gain and filter settings to determine a safe interchannel delay that allows

Table 9-2. SCXI-1100 Channel Arrays, Input Limits Arrays, and Gains

Array
Index

SCXI-1100
Channel List Array

Input Limits
Array

LabVIEW
Selected

SCXI Gain

LabVIEW
Selected

MIO/AI Gain

0 ob0!sc1!md1!0:7 –0.01 to 0.01 1000 1

0 ob0!sc1!md1!0:7 –0.001 to 0.001 2000 51

0 sc1!md1!0:7 –0.001 to 0.001 2000 1

0
1

ob0!sc1!md1!0:3

ob0!sc1!md1!4:15

–0.1 to 0.1
–0.01 to 0.01

100
100

1
10

0
1

ob0!sc1!md1!0:15

ob0!sc1!md1!16:31

–0.01 to 0.01
–1.0 to 1.0

10
10

1002

1

0
1
2

ob0!sc1!md1!0:3

ob0!sc1!md1!4:15

ob0!sc1!md2!0:7

–1.0 to 1.0
–0.1 to 0.1

–0.01 to 0.01

10
10

1000

1
10

1

1 Applies if the MIO/AI device supports a gain of 5 (some MIO/AI devices do not).
2 This case forces a smaller gain at the SCXI module than at the MIO/AI device, because the input limits for the next channel
range on the module require a small SCXI gain. This type of gain distribution is not recommended because it defeats the
purpose of providing amplification for small signals at the SCXI module. The small input signals are only amplified by
a factor of 10 before they are sent over the ribbon cable, where they are very susceptible to noise. To use the optimum
gain distribution for each set of input signals, do not mix very small input signals with larger input signals on the same
SCXI-1100 module unless you are sampling them at different times.
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the SCXI amplifiers and multiplexers to settle between channel switching
before sampling the next channel.

LabVIEW calculates the delay for you. If you set a scan rate that is too
fast to allow for the default interchannel delay, LabVIEW shrinks the
interchannel delay and returns a warning from the AI Start or
AI Control VIs. Refer to your hardware manuals for SCXI settling times.

You can open the advanced-level AI Clock Config VI to retrieve the
channel clock selection. Set the which clock control to channel clock 1,
and set the clock frequency to –1.00 (no change). Now run the VI. The
actual clock rate specification cluster is on the right side of the panel.

Note When using NI 406X devices with SCXI, you cannot use the external triggering
feature of the NI 406X device.

Common SCXI Applications
Now that you have your SCXI system set up and you are aware of the
special SCXI programming considerations, you should learn about some
common SCXI applications. This section covers example VIs for analog
input, analog output, and digital modules. For analog input, you will learn
how to measure temperature (with thermocouples and RTDs) and strain
(with strain gauges) using the SCXI-1100, SCXI-1101, SCXI-1102,
SCXI-1112, SCXI-1121, SCXI-1122, SCXI-1125, SCXI-1141,
SCXI-1142, SCXI-1143, and SCXI-1520 modules. If you are not
measuring temperature or pressure, you still can gain basic conceptual
information on how to measure voltages with an analog input module.

Four other analog input modules, the SCXI-1140, SCXI-1520, SCXI-1530,
and SCXI-1531, are simultaneous sampling modules. All the channels
acquire voltages at the same time, which means you can preserve
interchannel phase relationships. After all channel voltages are sampled by
going into hold mode, the software reads one channel at a time. When a
scan of channels is done, the module returns to track mode until the next
scan period. Both of these operations are performed by the analog input
VIs. You can use any of the DAQ VIs, available in the examples\daq\
anlogin\anlogin.llb, or the Getting Started Analog Input VI,
available in the examples\daq\run_me.llb, to acquire data from the
SCXI-1140, SCXI-1520, SCXI-1530, or SCXI-1531 module.

For analog output, you will learn how to output voltage or current values
using the SCXI-1124 module. For digital I/O, you will learn how to input
values on the SCXI-1162/1162HV modules and output values on the
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SCXI-1160, SCXI-1161, and SCXI-1163/1163R modules. For switching,
you will learn how to open, close, or make other channel connections on the
SCXI-1127, SCXI-1128, SCXI-1150, and SCXI-1151.

Analog Input Applications for Measuring Temperature and Pressure
Two common transducers for measuring temperature are thermocouples
and RTDs. A common transducer for measuring pressure is strain gauges.
Read the following sections on special measuring considerations needed
for each transducer.

If you use the DAQ Channel Wizard to configure your analog input
channels, you can simplify the programming needed to measure your
channels. This section describes methods of measuring data using named
channels configured in the DAQ Channel Wizard and using the
conventional method.

Measuring Temperature with Thermocouples
If you want to measure the temperature of the environment, you can use the
temperature sensors in the terminal blocks. If you want to measure the
temperature of an object away from the SCXI chassis, you must use a
transducer, such as a thermocouple. A thermocouple is a junction of
two dissimilar metals that gives varying voltages based on the temperature.
However, when using thermocouples, you need to compensate for the
thermocouple voltages produced at the screw terminal because the junction
with the screw terminals itself forms another thermocouple. You can use
the resulting voltage from the temperature sensor on the terminal block
for cold-junction compensation (CJC). The CJC voltage is used when
linearizing voltage readings from thermocouples into temperature values.

The SCXI modules used to measure temperature in this section are the
SCXI-1100, SCXI-1101, SCXI-1102, SCXI-1112, SCXI-1120,
SCXI-1120D, SCXI-1121, SCXI-1122, SCXI-1125, SCXI-1127,
SCXI-1141, SCXI-1142, and SCXI-1143. Most of the terminal blocks
used with these modules have temperature sensors that you can use
for CJC.

In addition, the SCXI-1100, SCXI-1112, SCXI-1122, SCXI-1125,
SCXI-1141, SCXI-1142, and SCXI-1143 offer a way for you to ground the
module amplifier inputs so you can read the amplifier offset. You can
subtract the amplifier offset value to determine the actual voltages.
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Temperature Sensors for Cold-Junction Compensation
The temperature sensors in the terminal blocks for the analog input
modules can be used for CJC. If you are operating your SCXI modules in
multiplexed mode, leave the cold-junction sensor jumper on the terminal
block in the mtemp (factory default) position. If you are using parallel
mode, you can use the dtemp jumper setting.

Note The SCXI-1101, SCXI-1102, SCXI-1112, and SCXI-1127 use the cjtemp string
only in multiplexed mode. The SCXI-1125 also uses the cjtemp string when the
temperature sensor is configured in mtemp mode.

To read the temperature sensor, use the standard SCXI string syntax in the
channels array with mtemp substituted for the channel number, as shown
in the following table.

Channel List Element Channel Specified

ob0!scx!mdy!mtemp The temperature sensor configured in
mtemp mode on the multiplexed module
in slot y of the chassis with ID x.

ob0!scx!mdy!cjtemp The temperature sensor configured in
cjtemp mode on the multiplexed
SCXI-1102 module in slot y of the
chassis with ID x, or the temperature
sensor configured in mtemp mode on the
multiplexed SCXI-1125 module in slot y
of the chassis with ID x.

ob0!scx!mdy!cjtempz The temperature sensor configured in
cjtempmode for the analog channel z on
the multiplexed SCXI-1112 module in
slot y of the chassis with ID x.
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If you want to read the cold-junction temperature sensor in dtemp mode,
you can read the following onboard channels for these modules.

For example, you can run the Getting Started Analog Input VI, available
in the examples\daq\run_me.llb, with the channel string
ob0!sc1!md1!mtemp to read the temperature sensor on the terminal
block connected to the module in slot 1 of SCXI chassis 1.

SCXI terminal blocks have two different kinds of sensors: an Integrated
Circuit (IC) sensor or a thermistor. For terminal blocks that have IC
sensors, such as the SCXI-1300 and the SCXI-1320, you can multiply
the voltage read from the IC sensor by 100 to get the ambient temperature
in degrees Centigrade at the terminal block. For terminal blocks that
have thermistors, such as the SCXI-1303, SCXI-1322, SCXI-1327,
and SCXI-1328, use the Convert Thermistor VI, available on the
Functions»Data Acquisition»Signal Conditioning palette, to convert
the raw voltage data into units of temperature.

You cannot sample other SCXI channels from the same module while you
are sampling the mtemp sensor. However, if you are in parallel mode, you
can sample the dtemp sensor along with other channels on the same
module at the same time because you are not performing any multiplexing
on the SCXI module. You also can sample the cjtemp sensor along with
other channels on the SCXI-1101, SCXI-1102, SCXI-1112, SCXI-1125,
and SCXI-1127. For the SCXI-1102, cjtemp must be the first channel in
the channel list. The SCXI-1112 and SCXI-1125 can sample cjtemp
channels in any order in the channel list.

For greater accuracy, take several readings from the temperature sensor and
average those readings to yield one value. If you do not want to average
several readings, take a single reading using the Easy Analog Input VI,
AI Sample Channel.

Modules Channel

SCXI-1100 1

SCXI-1120/SCXI-1120D 15
(use referenced single-ended mode)

SCXI-1121 4

SCXI-1122 1
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Refer to the SCXI Thermocouple VIs in the appropriate library in
examples\daq\scxi for examples of using the cjtemp or mtemp string
to read the temperature sensor and using the reading for thermocouple
cold-junction compensation.

Amplifier Offset
The SCXI-1100, SCXI-1101, SCXI-1112, SCXI-1122, SCXI-1125,
SCXI-1141, SCXI-1142, and SCXI-1143 have a special calibration feature
that enables LabVIEW to ground the module amplifier inputs so that you
can read the amplifier offset. For the other SCXI analog input modules, you
must physically wire your terminals to ground. The measured amplifier
offset is for the entire signal path including the SCXI module and the DAQ
device.

To read the grounded amplifier on the SCXI-1100, SCXI-1101, or
SCXI-1122, use the standard SCXI string syntax in the channels array with
calgnd substituted for the channel number, as shown in the following
table.

For example, you can run the Getting Started Analog Input VI, available
in the examples\daq\run_me.llb, with the channel string 
ob0!sc1!md1!calgnd to read the grounded amplifier of the module in
slot 1 of SCXI chassis 1. The voltage reading should be very close to 0 V.
The AI Start VI grounds the amplifier before starting the acquisition, and
the AI Clear VI removes the grounds from the amplifier after the
acquisition completes.

The SCXI-1112, SCXI-1125, SCXI-1141, SCXI-1142, and SCXI-1143
have separate amplifiers for each channel, so you must specify the channel
number when you ground the amplifier. To specify the channel number,
attach the channel number to the end of the string calgnd. For example,
calgnd2 grounds the amplifier inputs for channel 2 and reads the offset.

Channel List Element Channel Specified

ob0!scx!mdy!calgnd (SCXI-1100 and SCXI-1122 only)
The grounded amplifier of the module
in slot y of the chassis with ID x.

ob0!scx!mdy!calgndz Where z is the appropriate SCXI
channel needing shunting for the
SCXI-1112, SCXI-1125, SCXI-1141,
SCXI-1142, or SCXI-1143.
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You also can specify a range of channels. The string calgnd0:7 grounds
the amplifier inputs for channels 0 through 7 and reads the offset for each
amplifier.

Use the Scaling Constant Tuner VI, available on the Functions»Data
Acquisition»Signal Conditioning palette, to modify the scaling constants
so LabVIEW automatically compensates for the amplifier offset when
scaling binary data to voltage. Refer to the SCXI-1100 Voltage VI in the
examples\daq\scxi\scxi1100.llb for an example of how to use the
Scaling Constant Tuner VI.

VI Examples
If you use the DAQ Channel Wizard to configure your channels, you
can simplify the programming needed to measure your signal. LabVIEW
configures the hardware with the appropriate input limits and gain, and
performs CJC, amplifier offsets, and scaling for you. You can use the Easy
VIs or the Continuous Transducer VI, available in the examples\daq\
solution\transduc.llb, to measure a channel using a channel name.
Enter the name of your configured channel in the channels input. The
device input value is not used by LabVIEW when you use channel names.
The acquired data is in the physical units you specified in the DAQ Channel
Wizard.

The remainder of this section describes how to measure temperature with
the SCXI-1100 and SCXI-112X modules using thermocouples when you
do not use the DAQ Channel Wizard. The temperature examples below use
both cold-junction measurements and amplifier offsets. In SCXI analog
input examples, you cannot set the scaling constants with the Easy VIs
(determined by the amplifier offset). With the Intermediate VIs, you can
change the scaling constants before acquisition begins, and the
Advanced VIs include functions that are not necessary to accurately
measure temperature with SCXI modules. The examples described in this
section use Intermediate VIs along with transducer-specific VIs.

First, you should learn how to measure temperature using the SCXI-1100
with thermocouples. You can use the example SCXI-1100
Thermocouple VI, available in the examples\daq\scxi\
scxi1100.llb. Open the VI and continue reading this section.

To reduce the noise on the slowly varying signals produced by
thermocouples, you can average the data and then linearize it. For greater
accuracy, you can measure the amplifier offset, which helps scale the data
and lets you eliminate the offset error from your measurement. Figure 9-6
shows how you can program the Acquire and Average VI, available in the
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vi.lib\daq\zdaqutil.llb, to measure the amplifier offset. This VI
acquires 100 measurements from the amplifier offset, designated in the
offset channel input by calgnd, and then averages the measurements.
When you determine the amplifier offset, you must always use the same
input limits and clock rates that you will be using in the acquisition. The
Acquire and Average VI can measure the amplifier offset of many modules
at once, but in Figure 9-6, it measures only one module.

Figure 9-6. Measuring a Single Module with the Acquire and Average VI

After measuring the amplifier offset, measure the temperature sensor for
CJC. Both the amplifier offset and cold-junction measurements should be
taken before any thermocouple measurements are taken. Use the Acquire
and Average VI to measure temperature sensors, as shown in Figure 9-7.
The main differences between the amplifier offset measurement and
temperature sensor measurement are the channel string and the input limits.
If you set the temperature sensor in mtempmode (the most common mode),
you access the temperature by using mtemp. If you set the temperature
sensor in dtemp mode, you read the corresponding DAQ device onboard
channel. Make sure you use the temperature sensor input limits, which are
different from your acquisition input limits. To read from a temperature
sensor based on an IC sensor or a thermistor, set the input limit range from
+2 to –2 V.



Chapter 9 SCXI—Signal Conditioning

LabVIEW Measurements Manual 9-22 www.ni.com

Figure 9-7. Measuring Temperature Sensors Using the Acquire and Average VI

After determining the average amplifier offset and cold-junction
compensation, you can acquire data using the Intermediate VIs as shown in
Figure 9-8. This example continually acquires data until an error occurs or
the user stops the execution of the VI. For continuous, hardware-timed
acquisition, you need to set up a buffer. In this case, the buffer is 10 times
the number of points acquired for each channel. Before you initiate the
acquisition with the AI Start VI, you need to set up the binary-to-voltage
scaling constants by using the Scaling Constant Tuner VI. This VI,
available on the Functions»Data Acquisition»Signal Conditioning
palette, passes the amplifier offset to the DAQ driver so that LabVIEW
accounts for the amplifier offset as the AI Read VI retrieves the data. After
the compensated voltage data from the AI Read VI is averaged, the voltage
values are converted to temperature and linearized by using the Convert
Thermocouple Reading VI, available on the Functions»Data
Acquisition»Signal Conditioning palette. After completing the
acquisition, remember to always clear the acquisition by using the
AI Clear VI.
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Figure 9-8. Continuously Acquiring Data Using Intermediate VIs

Refer to the SCXI Temperature Monitor VI in the examples\daq\
scxi\scxi1100.llb for another temperature acquisition example using
the SCXI-1100 module. This VI continually acquires thermocouple
readings and sets an alarm if the temperature readings go above a
user-defined limit.

You can use the SCXI-1100 examples with the SCXI-1122 module.
Both modules have the capability to programmatically measure the
amplifier offsets, and both modules need the CJC to linearize thermocouple
measurements. The main differences between the two modules include the
type of temperature sensors available on their terminal blocks and the way
module channels are multiplexed.

The SCXI-1100 uses a CMOS multiplexer, which is capable of
fast-channel multiplexing, whereas the SCXI-1122 uses an
electromechanical relay to switch one of its 16 channels. Because the
SCXI-1122 uses a relay, this module imposes a minimum interchannel
delay of 10 ms, which affects the maximum possible scan rate. Scanning
multiple SCXI-1122 channels many times can quickly wear out the relay.
To avoid this, acquire data from the SCXI-1122 module one channel at a
time. Refer to the SCXI-1122 User Manual or the SCXI-1122 Voltage VI
in the examples\daq\scxi\scxi1122.llb for more information about
reading SCXI-1122 channels.
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Refer to the examples in the appropriate library for the module in
examples\daq\scxi if you are measuring temperature with the
SCXI-1120 and SCXI-1121 modules. This VI is similar to the VI used to
measure temperature on the SCXI-1100. Both VIs average and linearize
temperature data using the Intermediate analog input VIs. The main
differences between the VIs are that the SCXI-1120/1121 VI does not
measure the amplifier offset, and the input limits for the module and the
temperature sensor are different from the input limits for the SCXI-1100.

The SCXI-1120 and SCXI-1121 modules do not have the internal switch
used to programmatically ground the amplifiers as in the SCXI-1100 for
the amplifier offset measurement. To determine the amplifier offset, you
must manually wire the amplifier terminals to ground and use a separate VI
to read the offset voltage. You also can manually calibrate the SCXI-1120
and SCXI-1121 to remove any amplifier offset on a channel-by-channel
basis. Refer to the SCXI-1120 or SCXI-1121 user manuals for specific
instructions.

Refer to the examples in the appropriate library for the module in
examples\daq\scxi if you are measuring thermocouples with the
SCXI-1125 or the SCXI-1112. These examples demonstrate how to scan
the CJC channel (cjtemp) while scanning the thermocouple channels. By
scanning the cold-junction sensor with the thermocouple channels, these
examples are better suited to take temperature measurements over longer
periods of time by accounting for temperature changes at the thermocouple
junction inside the terminal block. The SCXI-1125 thermocouple example
also demonstrates the ability to shunt the inputs and take an offset reading
before collecting temperature data. This allows you to compensate for any
offset drift due to operation at elevated temperatures or for offset produced
by the system along the signal path.

Measuring Temperature with RTDs
Resistance-temperature detectors (RTDs) are temperature-sensing devices
whose resistance increases with temperature. They are known for their
accuracy over a wide temperature range. RTDs require current excitation
to produce a measurable voltage. RTDs are available in 2-wire, 3-wire,
or 4-wire configuration. The lead wires in the 4-wire configuration are
resistance-matched. If you use a 2-wire or 3-wire RTD, they are
unmatched. Resistance in the lead wires that connect your RTD to the
measuring system will add error to your readings. If you are using lead
lengths greater than 10 feet, you need to compensate for this lead
resistance. RTDs also are classified by the type of metal they use. The most
common metal is platinum.
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Refer to Application Note 046, Measuring Temperature with RTDs—A
Tutorial for more information about how the lead wires affect RTD
measurements as well as general RTD information. You can find this note
on the National Instruments Developer Zone, zone.ni.com

Signal conditioning is needed to interface an RTD to a DAQ device or an
SCXI-1200 module. Signal conditioning required for RTDs include current
excitation for the RTD, amplification of the measured signal, filtering of
the signal to remove unwanted noise, and isolation of the RTD and
monitored system from the host computer. Typically, you would use the
SCXI-1121 module with RTDs because it easily performs all the signal
conditioning listed previously. You must set up the excitation level, gain,
and filter settings on the SCXI-1121 module with jumpers as well as in the
configuration utility of your system.

The SC-2042 RTD is a signal conditioning device designed specifically for
RTD measurement, and you can use it as an alternative to SCXI modules.
Refer to the National Instruments catalog for more information.

You do not have to worry about CJC with RTDs as you do when measuring
thermocouples. To build an application in LabVIEW, you can use the Easy
I/O analog input VIs. If you are measuring multiple transducers on several
different channels, you need to scan the necessary channels with little
overhead. Because the Easy I/O VIs reconfigure your SCXI module every
time your application performs an acquisition, it is recommended that you
use the Intermediate analog input VIs instead.

Using the DAQ Channel Wizard to configure your channels can simplify
the programming needed to measure your signal, as shown in Figure 9-9.
LabVIEW configures the hardware with appropriate input limits and gain,
measures the RTD, and scales the measurement for you. Enter the name of
your configured channel in the channels input parameter. The acquired
data is in the physical units you specify in the DAQ Channel Wizard.
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Figure 9-9. Measuring Temperature Using Information from the DAQ Channel Wizard

The VI in Figure 9-9 continually acquires data until an error occurs or you
stop the VI from running. To perform a continuous hardware-timed
acquisition, you must set up a buffer. In this example, the buffer is 10 times
the number of points acquired for each channel. For each acquisition, your
device averages the temperature data. After completing the acquisition,
always clear the acquisition by using the AI Clear VI.

If you are not using the DAQ Channel Wizard, you must use the
RTD Conversion VI in addition to specifying additional input
parameters, as shown in Figure 9-10. The Convert RTD Reading VI,
available on the Functions»Data Acquisition»Signal Conditioning
palette, converts the voltage read from the RTD to a temperature
representation.

Note Use the RTD conversion function in LabVIEW only for platinum RTDs. If you do
not have a platinum RTD, the voltage-temperature relation is different, so you cannot use
the LabVIEW conversion function.
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Figure 9-10. Measuring Temperature Using the Convert RTD Reading VI

The VI in Figure 9-10 continually acquires data until an error occurs or
you stop the VI from executing. For continuous hardware-timed
acquisition, you need to set up a buffer. In this example, the buffer is
10 times the number of points acquired for each channel. After your device
averages the voltage data from the AI Read VI, it converts the voltage
values to temperature. After completing the acquisition, remember to
always clear the acquisition by using the AI Clear VI.

Measuring Pressure with Strain Gauges
Strain gauges give varying voltages in response to stress or vibrations
in materials. Strain gauges are thin conductors attached to the material
to be stressed. Resistance changes in parts of the strain gauge to indicate
deformation of the material. Strain gauges require excitation (generally
voltage excitation) and linearization of their voltage measurements.
Depending on the strain-gauge configuration, another requirement for
using strain gauges with SCXI is a configuration of resistors. As shown in
Figure 9-11, the resistance from the strain gauges combined with the
SCXI hardware form a diamond-shaped configuration of resistors, known
as a Wheatstone bridge. When you apply a voltage to the bridge, the
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differential voltage (Vm) varies as the resistor values in the bridge change.
The strain gauge usually supplies the resistors that change value with strain.

Figure 9-11. Half-Bridge Strain Gauge

Strain gauges come in full-bridge, half-bridge, and quarter-bridge
configurations. For a full-bridge strain gauge, the four resistors of the
Wheatstone bridge are physically located on the strain gauge itself. For a
half-bridge strain gauge, the strain gauge supplies two resistors for the
Wheatstone bridge while the SCXI module supplies the other two resistors,
as shown above. For a quarter-bridge strain gauge, the strain gauge supplies
only one of the four resistors for a Wheatstone bridge.

The SCXI-1520 is a dedicated strain measuring module, with software
configurable bridge-completion, excitation, and resistance shunt switches,
as well as filter and gain, on each of the 8 channels.

The SCXI-1121 and the SCXI-1122 modules are also commonly used with
strain gauges because they include voltage or current excitation and internal
Wheatstone bridge completion circuits. You also can use the signal
conditioning device SC-2043SG as an alternative to SCXI modules. The
device is designed specifically for strain-gauge measurements. For more
information on this device, refer to your National Instruments catalog.

You can set up your SCXI module to amplify strain-gauge signals or filter
noise from signals. Refer to your Getting Started with SCXI manual for the
necessary hardware configuration and For information about setting up the
excitation level, gain, and filter settings.

To build a strain-gauge application in LabVIEW, you can use the Easy I/O
analog input VIs. If you are measuring multiple transducers on several
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different channels, you need to scan the necessary channels as quickly as
possible. Because the Easy I/O VIs reconfigure your SCXI module every
time the VI is called, you should use the Intermediate analog input VIs as
well as the Strain Gauge Conversion VI, as shown in Figure 9-12.
The Convert Strain Gauge Reading VI, available on the Functions»Data
Acquisition»Signal Conditioning palette, converts the voltage read by the
strain gauge to units of strain.

Using the DAQ Channel Wizard to configure your channels simplifies the
programming required to measure your signal, as shown in Figure 9-12.
LabVIEW configures the hardware with the appropriate input limits and
gain, measures the strain, and scales the measurement for you. Enter the
name of your configured channel in the channels input. You do not need to
wire the device or input limits input. The acquired data is in the physical
units you specified in the DAQ Channel Wizard.

Figure 9-12. Measuring Pressure Using Information from the DAQ Channel Wizard

The VI in Figure 9-12 continually acquires data until an error occurs or you
stop the VI from running. In order to perform continuous acquisition, you
need to set up a buffer. In this example, the buffer is 10 times the number
of points acquired for each channel. After your device averages the voltage
data from the AI Read VI, it converts the voltage values to strain values.
After completing the acquisition, always remember to clear the acquisition
by using the AI Clear VI.
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When measuring strain-gauge data, there are some parameters on the
Convert Strain Gauge Reading VI you should know.

Vsg, the strain-gauge value, is the only parameter wired in Figure 9-12. The
other parameters for this VI have default values, but those values may not
be correct for your strain gauge. You should check the following
parameters:

• Rg—The resistance of the strain gauge before strain is applied.
You usually can ignore the lead resistance

• Bridge Configuration

• Vex—The excitation voltage

• Vinit—The voltage across the strain gauge before strain is applied
(always measure at the beginning of the VI)

• Rl—The lead resistance

• Rl—For strain gauges unless the leads are several feet

Analog Output Application Example
You can output isolated analog signals using the SCXI-1124 analog output
module. The remainder of this section describes how to generate signals
with the SCXI-1124 when you do not use the DAQ Channel Wizard.

The SCXI-1124 can generate voltage and current signals. Refer to the ,
SCXI-1124 Update Channels VI in the examples\daq\scxi\
scxi1124.llb for an example analog output VI. This VI uses the analog
output Advanced VIs because the output mode (whether you have voltage
or current data) must be accessible in order to change the value. The
program calls the AO Group Config VI to specify the device and output
channels. The AO Hardware Config VI specifies the output mode and the
output range, or limit settings, for all the channels specified in the channels
string. This advanced-level VI is the only place where you can specify a
voltage or current output mode. If you are going to output voltages only,
consider using the AO Config VI (an Intermediate VI), instead of the
AO Group Config and AO Hardware Config VIs. You can program
individual output channels of the SCXI-1124 for different output ranges
by using the arrays for channels, output mode, and limit settings. The
AO Single Update VI initiates the update of the SCXI-1124 output
channels. To help debug your VIs, it is always helpful to display any errors,
in this case using the Simple Error Handler VI.
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Digital Input Application Example
To input digital signals through an SCXI chassis, you can use the
SCXI-1162 and SCXI-1162HV modules and the Easy Digital VI,
Read from Digital Port, as shown in Figure 9-13.

Figure 9-13. Inputting Digital Signals through an SCXI Chassis Using Easy Digital VIs

If you configure channels using the DAQ Channel Wizard, digital channel
can consist of a digital channel name. The channel name can refer to either
a port or a line in a port. You do not need to specify device, line, or port
width, as these inputs are not used by LabVIEW if a channel name is
specified in digital channel.

As an alternative, digital channel can be expressed in the scx!mdy!0
format, where you are trying to input from the digital input module on slot
y of chassis x. The last identifier is always port 0, because the whole
module is considered one port. In this example, you also must specify
device and port width. The port width should be the number of lines in
a port on your SCXI module if you are operating in multiplexed mode.
For the SCXI-1162 and SCXI-1162HV, the port width is 32 lines. If you
are operating in parallel mode, the port width should be the number of
lines on your DAQ device. The DIO-32F/DIO-32HS/6533 device can
access all 32 lines of the SCXI modules at once by using the SCXI-1348
cable assembly. The DIO-24 and the DIO-96 devices can access only the
first 24 lines of these modules when configured in parallel mode. For the
fastest performance in parallel mode, you can use the appropriate onboard
port numbers instead of the SCXI channel string syntax.

Use the iteration input to optimize your digital operation. When iteration
is 0 (default), LabVIEW calls the DIO Port Config VI (an Advanced VI) to
configure the port. If iteration is greater than zero, LabVIEW bypasses
reconfiguration and remembers the last configuration, which improves
performance. You can wire this input to an iteration terminal of a loop.
With the DIO-24 and DIO-96 devices, every time you call the DIO Port
Config VI, the digital line values are reset to default values. If you want
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to maintain the integrity of the digital values from one loop iteration to
another, do not set iteration to 0 except for the first iteration of the loop.

Refer to the SCXI-1162HV Digital Input VI in the examples\daq\
scxi\scxi1162.llb for an example of SCXI digital input. Even though
this VI uses Advanced VIs, it is functionally equivalent to the Easy I/O
Digital VI, Read from Digital Port.

Note The DIO Port Config VI resets output lines on adjacent ports on the same 8255 chip
for DIO-24, DIO-96, and Lab and 1200 Series devices.

Note If you also are using SCXI analog input modules, make sure your cabling
DAQ device is cabled to one of them.

Digital Output Application Example
To output digital signals through an SCXI chassis, you can use the
SCXI-1160, SCXI-1161, SCXI-1163, and SCXI-1163R modules and the
digital Easy Digital VI, Write to Digital Port, as shown in Figure 9-14.

Figure 9-14. Outputting Digital Signals through
an SCXI Chassis Using Easy Digital VIs

If you configure channels using the DAQ Channel Wizard, digital channel
can consist of a digital channel name. The channel name can refer to either
a port or a line in a port. You do not need to specify device, line, or port
width, as these inputs are not used by LabVIEW if a channel name is
specified in digital channel.

As an alternative, digital channel can be expressed in the scx!mdy!0
format, where you are trying to output from the digital output module on
slot y of chassis x. The last identifier is always port 0, because the whole
module is considered one port. In this case, you also must specify device



Chapter 9 SCXI—Signal Conditioning

© National Instruments Corporation 9-33 LabVIEW Measurements Manual

and port width. The port width should be the number of lines on your
SCXI module if you are operating in multiplexed mode. The SCXI-1160
has 16 relays, the SCXI-1161 has eight relays, and the SCXI-1163/1163R
have 32 relays. You can not use the SCXI-1160 or SCXI-1161 in parallel
mode. For the SCXI-1163/1163R the port width in parallel mode should
be the number of lines on your DAQ device or SCXI-1200 module. The
6533 device can access all 32 lines of the SCXI-1163/1163R modules at
once by using the SCXI-1348 cable assembly. The DIO-24 and the DIO-96
devices can access only the first 24 lines of the SCXI-1163/1163R when
configured in parallel mode. For the fastest performance in parallel mode,
you can use the appropriate onboard port numbers instead of the SCXI
channel string syntax.

Use the iteration input to optimize your digital operation. When iteration
is 0 (default), LabVIEW calls the DIO Port Config VI (an Advanced VI)
to configure the port. If iteration is greater than zero, LabVIEW bypasses
reconfiguration and remembers the last configuration, which improves
performance. You can wire this input to an iteration terminal of a loop.
Every time you call the DIO Port Config VI the digital line values are reset
to default values. If you want to maintain the integrity of the digital values
from one loop iteration to another, do not set iteration to 0 except for the
first iteration of the loop.

Refer to the SCXI-116x Digital Output VI in the examples\daq\scxi\
scxi_dig.llb for an example of SCXI digital output. Even though this
VI uses Advanced VIs, it is functionally equivalent to the Easy Digital VI,
Write to Digital Port.

Note If you also are using SCXI analog input modules, make sure your cabling
DAQ device is cabled to one of them.

Multi-Chassis Applications
You can daisy-chain multiple SCXI-1000, SCXI-1000DC, or SCXI-1001
chassis using the SCXI-1350 or SCXI-1346 multichassis cable adapters
and an MIO Series DAQ device other than the DAQPad-MIO-16XE-50.
Every module in each of the chassis must be in multiplexed mode. Only one
of the chassis will be connected directly to the DAQ device. Also, if you
are using Remote SCXI with RS-485, you can daisy-chain up to 31 chassis
on a single RS-485 port. Because you can configure only up to 16 devices
on the NI-DAQ Configuration Utility, you can have only up to
16 SCXI-1200s in your system.
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Note Lab Series devices, LPM devices, DAQCard-500, 516 devices, DAQCard-700,
1200 Series (other than SCXI-1200), and DIO-24 devices do not support multichassis
applications.

If you use the DAQ Channel Wizard to configure your analog input
channels, you simply address channels in multiple chassis by their channel
names. You can combine channel names, separated by commas, to measure
data from multiple modules in a daisy-chain configuration at the same time.
For example, if you have a named channel called temperature on one
module in the daisy chain and pressure on another module in the same
daisy chain, your channels array could be temperature, pressure. You
must enter the chassis in a sequential order in the NI-DAQ Configuration
Utility, assigning the first chassis in the chain an ID number of 1, the second
chassis an ID number of 2, and so forth.

If you are not using the DAQ Channel Wizard, there are special
considerations for addressing the channels. When you daisy-chain multiple
chassis to a single DAQ device (non-Remote SCXI), each chassis
multiplexes all of its analog input channels into a separate onboard analog
input channel. The first chassis in the chain uses onboard channel 0, the
second chassis in the chain uses onboard channel 1, and so on. To access
channels in the second chassis, you must select the correct onboard channel
as well as the correct chassis ID. The string ob1!sc2!md1!0 means
channel 0 on the module in slot 1 of SCXI chassis 2, multiplexed into
onboard channel 1. Remember to use the correct chassis ID number from
the configuration utility and to put the jumpers from the power supply
module in the correct position for each chassis.

When an MIO/AI Series device is cabled by a ribbon cable or shielded
cable to multiple chassis, the number of reserved analog input channels
depends on the number of chassis. On MIO Series devices, lines 0, 1,
and 2 are unavailable. On MIO E Series devices, lines 0, 1, 2, and 4 are
unavailable.

When you access digital SCXI modules, you do not use onboard channels.
Therefore, if you have multiple chassis, you only have to choose the correct
SCXI chassis ID and module slot.

When you use Remote SCXI to address analog input channels, specify the
device number of the SCXI-1200 that is located in the same chassis
containing the analog input module from which you take samples.
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You can perform DAQ operations on channels in multiple SCXI chassis at
the same time. For example, the first element of your channels array could
be ob0!sc1!md1!0:31, and the second element of the channels array
could be ob1!sc2!md1!0:31. Then, LabVIEW would scan 32 channels
on module 1 of SCXI chassis 1, using onboard channel 0, then the
32 channels on module 1 in SCXI chassis 2, using onboard channel 1.
Remember that the scan rate you specify is how many scans per second
LabVIEW performs. For each scan, LabVIEW reads every channel in the
channels array.

You can practice reading channels from different chassis by using the
channel strings explained above in the Easy VIs.

SCXI Calibration—Increasing Signal
Measurement Precision

Your SCXI module ships to you factory-calibrated for the specified
accuracy. You need to recalibrate the module only if the precision of your
signal measurement is not acceptable because of shifts in environmental
conditions.

Note This chapter does not apply to the SCXI-1200. For calibration on the SCXI-1200,
you should use the 1200 Calibrate VI, available on the Functions»Data
Acquisition»Calibration and Configuration palette. If you are using an SCXI-1200 in a
remote SCXI configuration, National Instruments recommends that you connect directly
to your parallel port to perform calibration, because it works much faster.

EEPROM Calibration Constants
When you calibrate your SCXI module in LabVIEW, the calibration
constants can be stored in electronically erasable programmable read-only
memory (EEPROM). The EEPROM stores calibration constant
information in the memory of your module. There are three parts to the
EEPROM: the factory area, the default load area, and the user area.

Note Only the SCXI-1102, SCXI-1102B, SCXI-1102C, SCXI-1104, SCXI-1104C,
SCXI-1112, SCXI-1122, SCXI-1124, SCXI-1125, SCXI-1141, SCXI-1142, SCXI-1143,
and SCXI-1520 have EEPROMs. All other SCXI modules do not store calibration
constants.
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Note The SCXI-1125 does not have a user area in its EEPROM.

• The factory area has a set of factory calibration constants already
stored in it when you receive your SCXI module. You cannot write into
the factory area, but you can read from it, so you can always access and
use these factory constants if they are appropriate for your application.

• The default load area is where LabVIEW automatically looks to load
calibration constants the first time you access the module. When the
module is shipped, the default load area contains a copy of the factory
calibration constants.

Note You can overwrite the constants stored in the default load area of EEPROM with a
new set of constants using the SCXI Cal Constants VI.

• The user area is an area for you to store your own calibration constants
that you calculate using the SCXI Cal Constants VI. You also can put
a copy of your own constants in the default load area if you want
LabVIEW to automatically load your constants for subsequent
operations. You can read and write to the user area.

Note Use the user area in EEPROM to store any calibration constants that you may need
to use later. This prevents you from accidentally overwriting your constants in the default
load area, because you will have two copies of your new constants. You can revert to the
factory constants by copying the factory area to the default load area without wiping out
your new constants entirely.

Calibrating SCXI Modules
The SCXI Cal Constants VI in LabVIEW automatically calculates the
calibration constants for your module with the precision you need for your
particular application. You can find this VI on the Functions»Data
Acquisition»Calibration and Configuration palette.

For the SCXI-1112, SCXI-1125, and SCXI-1520 modules, you can use the
SCXI Calibrate VI for easy one-point calibration (SCXI-1125) or
two-point calibration (SCXI-1112) without the separate function calls
necessary with the SCXI Cal Constants VI. One- and two-point calibration
are described in the SCXI Calibration Methods for Signal Acquisition
section later in this chapter. You also can find the SCXI Calibrate VI on the
Functions»Data Acquisition»Calibration and Configuration palette.
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By default, calibration constants for the SCXI-1102, SCXI-1102B,
SCXI-1102C, SCXI-1104, SCXI-1104C, SCXI-1112, SCXI-1122,
SCXI-1125, SCXI-1141, SCXI-1142, SCXI-1143, and SCXI-1520 are
loaded from the module EEPROM. The SCXI-1141, SCXI-1142, and
SCXI-1143 have only gain adjust constants in the EEPROM. They do not
have the binary zero offset. All other analog input modules do not have
calibration constants by default and do not assume any binary offset and
ideal gain settings. This means you must use one of the procedures
described in the SCXI Calibration Methods for Signal Acquisition section
to store calibration constants for your module if it is not an SCXI-1102,
SCXI-1112, SCXI-1122, SCXI-1125, SCXI-1141, SCXI-1142, or
SCXI-1143.

You can determine calibration constants based on your application setup,
which includes your type of DAQ device, DAQ device settings, and cable
assembly—combined with your SCXI module and its configuration
settings.

Note If your SCXI module has independent gains on each channel, the calibration
constants for each channel are stored at each gain setting.

SCXI Calibration Methods for Signal Acquisition
There are two ways you can calibrate your SCXI module—through
one-point calibration or two-point calibration. Figure 9-15 illustrates why
you may need to calibrate your SCXI module.
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Figure 9-15. Ideal versus Actual Reading

Figure 9-15 shows the difference between the ideal reading and the actual
reading. This difference is called Vos, or the binary offset, before the two
readings intersect. The difference in slope between the actual and ideal
readings is called the gain error.

One-point calibration removes the Vos (binary offset) by measuring a 0 V
signal and comparing the actual reading to it. Two-point calibration
removes the Vos (binary offset) and corrects gain error by first performing
a one-point calibration. Then you measure a voltage at x volts and compare
it to the actual reading. The x must be as close as possible to the full-scale
range. The following sections explain how to perform a one-point and
two-point calibration.

Binary Reading

Binary Offset

Gain Error

Vos

Actual Voltage
in Binary Representation

Actual Reading

Ideal Reading
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One-Point Calibration
Use one-point calibration when you need to adjust only the binary offset in
your module. If you need to adjust both the binary offset and the gain error
of your module, refer to the Two-Point Calibration section later in this
chapter.

Note If you are using an E Series device, you should calibrate your DAQ device first using
the E Series Calibrate VI.

Complete the following steps to perform a one-point calibration calculation
in LabVIEW.

1. Make sure you set the SCXI gain to the gain you want to use in your
application. If your modules have gain jumpers or DIP switches, set
them appropriately. Refer to your SCXI module user manual
for jumper or switch setting information. If your modules have
software-programmable gain, use the input limits parameter in the
AI Config VI to set gain.

2. Program the module for a single-channel operation by using the
AI Config VI with the channel that you are calibrating as the channels
parameter in the VI.

3. Ground your SCXI input channel to determine the binary zero offset.
You should ground inputs because offset can vary at different voltage
levels due to gain error. If you are using an SCXI-1100 or SCXI-1122,
you can ground your input channels without external hookups by
substituting the channel string with calgnd as the channel number.
For other modules, you need to wire the positive and negative channel
inputs together at the terminal block and wire them to the chassis
ground.

4. Use the AI Single Scan VI to take several readings and average them
for greater accuracy. Set the DAQ device gain settings to match the
settings you plan to use in your application. By using the AI Start and
AI Read VIs, instead of the AI Single Scan VI, you can average over
an integral number of 60 or 50 Hz power line cycles (sine waves) to
eliminate line noise. You now have your first volt/binary measurement:
volt = 0.0 or the applied voltage at your input channel, and binary is
your binary reading or binary average.

5. Use the SCXI Cal Constants VI with your volt/binary measurement
from step 4 as the Volt/Amp/Hz 1 and Binary 1 inputs in your VI,
respectively. (These input names may vary depending on your
application setup.) For example, if your volt/binary measurement from
step 4 was 0.00 V and 2, enter the values into your front panel controls.
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Two-Point Calibration
The following steps show you how to perform a two-point calibration
calculation in LabVIEW. Use two-point calibration when you need to
correct both the binary offset and the gain error in your SCXI module.

Note If you are using an E Series device, you should calibrate your DAQ device first using
the E Series Calibrate VI.

To perform a two-point calibration calculation in LabVIEW, follow
steps 1 through 5 in the previous section, One-Point Calibration, then
complete the following steps.

6. Now apply a known, stable, non-zero voltage to your input channel at
the terminal block. This input voltage should be close to the upper limit
of your input voltage range for the given gain setting. For example, if
your input voltage range is –5 to 5 V, apply an input voltage that is as
close to 5 V as possible, but does not exceed 5 V.

7. Take another binary reading or average of readings. If your binary
reading is the maximum binary reading for your DAQ device, try a
smaller input voltage. This is your second volt/binary measurement.

8. Use the SCXI Cal Constants VI with the first volt/binary measurement
from step 4 as Volt/Amp/Hz 1 and Binary 1 inputs, and the second
measurement from step 7 as Volt/Amp/Hz 2 and Binary 2 inputs of
the VI. Your input names may vary depending on your application
setup.

9. If you are using SCXI-1102 or SCXI-1122 inputs, you can save the
constants in the module user area in EEPROM. Store constants in the
user area as you are calibrating, and use the SCXI Cal Constants VI
again at the end of your calibration sequence to copy the calibration
table in the user area to the default load area in EEPROM. Remember,
constants stored in the default load area can be overwritten. If you want
to use a set of constants later, keep a copy of the constants stored in the
user area in EEPROM.

Note If you are storing calibration constants in the SCXI-1102 or SCXI-1122 EEPROM,
your binary offset and gain adjust factors must not exceed the ranges given in the respective
module user manuals.

For other analog input modules, you must store the constants in the
memory. Unfortunately, calibration constants stored in the memory are lost
at the end of a program session. You can solve this problem by creating a
file and saving the calibration constants to this file. You can load them
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again in subsequent application runs by passing them into the SCXI Cal
Constants or the Scale Constant Tuner VIs.

Calibrating SCXI Modules for Signal Generation
When you output a voltage or current value to your SCXI analog output
module, LabVIEW uses the calibration constants loaded for the given
module, channel, and output range to scale the voltage or current value to
the appropriate binary value to write to the output channel. By default,
calibration constants for the SCXI-1124 are loaded into the memory from
the EEPROM default load area.

Recalibrate your SCXI analog output module by following these steps.

1. Use the AO Single Update VI to output a binary value. If you are
calibrating a voltage output range, enter 0 in the binary data input
of the VI. If you are calibrating current range, enter 255 into the
binary data input of the VI.

2. Measure the output voltage or current at the output channel with a
voltmeter or ammeter. This is your first volt/binary measurement:
Binary 1 = 0, and Volt/Amp/Hz 1 is the voltage or current you
measured at the output.

3. Use the AO Single Update VI to output a binary value of 4,095.

4. Measure the output voltage or current at the output channel. This is
your second volt/binary measurement: Binary 2 should be 4095 and
Volt/Amp 2 is the voltage or current you measured at the output.

5. Use SCXI Cal Constants VI with the first voltage/binary measurement
from step 2 as the Volt/Amp/Hz 1 and Binary 1 inputs and the second
measurement from step 4 as the Volt/Amp/Hz 2 and Binary 2 inputs
of the VI.

You can save the constants on the module in the user area in EEPROM. Use
the user area as you are calibrating, and use the SCXI Cal Constants VI
again at the end of your calibration sequence to copy the calibration table
in the user area to the default load area in EEPROM. Remember, you can
overwrite constants stored in the default load area. If you want to use a set
of constants later, keep a copy of the constants stored in the user area in
EEPROM.

Repeat the procedure above for each channel and range you want to
calibrate. Subsequent analog outputs will use your new constants to scale
voltage or current to the correct binary value.
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10
High-Precision Timing
(Counters/Timers)

Things You Should Know about Counters
Counters add counting or high-precision timing to your DAQ system.
Counters respond to and output TTL signals—square-pulse signals that
are 0 V (low) or 5 V (high) in value. The following diagram shows a TTL
signal.

Although counters count only the signal transitions (edges) of a
TTL source signal, you can use this counting capability in many ways:

• You can generate square TTL pulses for clock signals and triggers for
other DAQ applications.

• You can measure the pulse width of TTL signals.

• You can measure the frequency and period of TTL signals.

• You can count TTL signal transitions or elapsed time.

• You can divide the frequency of TTL signals.

• You can measure position using quadrature encoders.

Some of the advanced counters also allow you to make any of the above
measurements successively and return the measured values in a data buffer.

Signal Transitions
or Edges

+5 V

0 V
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Knowing the Parts of Your Counter
The following illustration shows a basic model of a counter.

A counter consists of a SOURCE (or CLK) input pin, a GATE input pin, an
OUT output pin, and a count register. In plug-in device diagrams, these
counter parts are called SOURCEn (or CLKn), GATEn, and OUTn, where
n is the number of the counter.

Edges are counted at the SOURCE input. The count register can be
preloaded with a count value, and the counter increments or decrements the
count register for each counted edge. The count register value always
reflects the current count of signal edges. Reading the count register does
not change its value. You can use the GATE input to control when counting
occurs in your application. You also can use a counter with no gating,
allowing the software to initiate the counting operation.

The OUT pin can be toggled according to available counter programming
modes to generate various TTL pulses and pulse trains.

Use the OUT signal of a counter to generate various TTL pulse waveforms.
If you are incrementing the count register value, you can configure the
OUT signal to either toggle signal states or pulse when the count register
reaches a certain value. The highest value of a counter is called the
terminal count (TC). If you are decrementing, the count register TC value
is 0. If you chose to have pulsed output, the counter outputs a high pulse
that is equal in time to one cycle of the counter SOURCE signal, which can
be either an internal or external signal. If you chose a toggled output, the
state of the output signal changes from high to low or from low to high. For
more control over the length of high and low outputs, use a toggled output.

GATE

SOURCE
(CLK)

OUT

Count Register
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Knowing Your Counter Chip
Most National Instruments DAQ devices contain one of four different
counter chips: the TIO-ASIC, the DAQ-STC, the Am9513, or the
8253/54 chip. Typically, 660x devices use the TIO-ASIC chip. E Series
devices (for example, the PCI-MIO-16E-1) use the DAQ-STC chip.
Legacy-type MIO devices (for example the AT-MIO-16) use the Am9513
chip. Low-cost Lab/1200-type devices (for example the PCI-1200) use the
8253/54 chip. If you are not sure which chip your device uses, refer to
your hardware documentation.

Figure 10-1. Counter Gating Modes

1

GATE

Counter Value 2

SOURCE

43 5 76 8 count rising SOURCE edge

Falling-Edge Gating

1

GATE

Counter Value 2

SOURCE

43 5 76 8 109 count rising SOURCE edge

Rising-Edge Gating

1

GATE

Counter Value 2

SOURCE

43 5 6 count rising SOURCE edge

High-Level Gating

1

GATE

Counter Value 2

SOURCE

43 5 6 count rising SOURCE edge

Low-Level Gating
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TIO-ASIC
You can configure the TIO-ASIC to count either low-to-high or
high-to-low transitions of the SOURCE input. The counter has a 32-bit
count register with a counting range of 0 to 232–1. It can be configured to
increment or decrement for each counted edge. Furthermore, you can use
an external digital line to control whether the count register increments or
decrements, which is useful for encoder applications. Of the gating modes
shown in Figure 10-1, the gating modes the TIO-ASIC supports depends
upon the application. This counter chip supports buffered counter
measurements. You can set the configuration parameters described above
using the Advanced VI, Counter Set Attribute.

DAQ-STC
You can configure the DAQ-STC to count either low-to-high or
high-to-low transitions of the SOURCE input. The counter has a 24-bit
count register with a counting range of 0 to 224–1. It can be configured to
increment or decrement for each counted edge. Furthermore, you can use
an external line to control whether the count register increments or
decrements, which is useful for encoder applications. Of the gating modes
shown in Figure 10-1, the gating modes the DAQ-STC supports depends
upon the application. You can set the configuration parameters discussed
above using the Advanced VI, Counter Set Attribute.

Am9513
You can configure the Am9513 to count either low-to-high or high-to-low
transitions of the SOURCE input. The counter has a 16-bit count register
with a counting range of 0 to 65,535, and can be configured to increment
or decrement for each counted edge. The Am9513 supports all of the gating
modes shown in Figure 10-1. You can set the configuration parameters
discussed above using the Advanced VI, CTR Mode Config.

8253/54
The 8253/54 chip counts low-to-high transitions of the CLK input. The
counter has a 16-bit count register with a counting range of 65,535 to 0
that decrements for each counted edge. Of the gating modes shown in
Figure 10-1, the 8253/54 supports only high-level gating. For single-pulse
output, the 8253/54 can create only negative-polarity pulses. For this
reason, some applications require the use of a 7404 inverter chip to produce
a positive pulse. The 14-pin 7404 is a common chip available from many
electronics store, and can be powered with the 5 V available on most DAQ
devices. Figure 10-2 shows how to wire a 7404 chip to invert a signal.
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Figure 10-2. Wiring a 7404 Chip to Invert a TTL Signal

Note Refer to the VIs in the examples\daq\counter library for more information
about the features of your counter chip.

Generating a Square Pulse or Pulse Trains
This section describes the ways you can generate a square pulse or multiple
pulses (called pulse trains) using the counters available on your DAQ
device with the example VIs in LabVIEW. All LabVIEW counter
examples are in the examples\daq\counter library.

Generating a Square Pulse
There are many applications where you may need to generate TTL pulses.
TTL pulses can be used as clock signals, gates, and triggers. You can use a
pulse train of known frequency to determine an unknown TTL pulse width.
You also can use a single pulse of known duration to determine an
unknown TTL signal frequency, or use a single pulse to trigger an analog
acquisition.

There are two basic types of counter signal generation—toggled and
pulsed. When a counter reaches a certain value, a counter configured for
toggled output changes the state of the output signal, while a counter
configured for pulsed output outputs a single pulse. The width of the pulse
is equal to one cycle of the counter SOURCE signal.

The following is a list of terms you should know before outputting a pulse
or pulse train using LabVIEW:

• Phase 1 refers to the first phase or delay to the pulse.

• Phase 2 refers to the second phase or the pulse itself.

DGND

+5 V

TTL signal in

inverted TTL signal out

7404
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• Period is the sum of phase 1 and phase 2.

• Frequency is the reciprocal of the period (1/period).

In LabVIEW, you can adjust and control the times of phase 1 and phase 2
in your counting operation. You do this by specifying a duty cycle. The duty
cycle equals

where period = phase 1 + phase 2.

Examples of various duty cycles are shown in Figure 10-3. The first line
shows a duty cycle of 0.5, where phase 1 and phase 2 are the same duration.
A signal with a 0.5 duty cycle acts as a SOURCE for counter operations.
The second line shows a duty cycle of 0.1, where phase 1 has increased and
phase 2 has decreased. The final line shows a large duty cycle of 0.9, where
phase 1 is very short and the phase 2 duration is longer.

Figure 10-3. Pulse Duty Cycles

Note A high duty cycle denotes a long pulse phase relative to the delay phase.

How you generate a square pulse varies depending upon which counter
chip your DAQ hardware has. If you are unsure which chip your device
uses, refer to your hardware documentation.

phase 2
period

---------------------,

counter starts

phase 1 phase 2

Duty Cycle = 0.5

Duty Cycle = 0.1

Duty Cycle = 0.9
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TIO-ASIC, DAQ-STC, and Am9513
When generating a pulse or pulse train with the TIO-ASIC, DAQ-STC,
or Am9513 chip, you can define the polarity of the signal as positive or
negative. Figure 10-4 shows these pulse polarities. Notice that for a signal
with a positive polarity, the initial state is low, while a signal with a
negative polarity has a high initial state.

Figure 10-4. Positive and Negative Pulse Polarity

Each counter-generated pulse consists of two phases. If the counter is
configured to output a signal with positive polarity and toggled output, as
shown in the following diagram, the period of time from when the counter
starts counting to the first rising edge is called phase 1. The time between
the rising and the following falling edge is called phase 2. If you configure
the counter to generate a continuous pulse train, the counter repeats this
process many times as shown on the bottom line of Figure 10-5.

Figure 10-5. Pulses Created with Positive Polarity and Toggled Output

8253/54
When generating a pulse with the 8253/54 chip, the hardware limits you
to a negative polarity pulse, as shown in Figure 10-4. The period of time
from when the counter starts counting to the falling edge is called phase 1.
The time between the falling and following rising edge is called phase 2.
Figure 10-6 shows these phases for a single negative-polarity pulse.

Positive Polarity Negative Polarity

counter starts

phase 1 phase 2

phase 1 phase 2phase 1 phase 2

Single Pulse

Pulse Train
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To create a positive-polarity pulse, you can connect your negative-polarity
pulse to an external 7404 inverter chip.

Figure 10-6. Phases of a Single Negative Polarity Pulse

When generating a pulse train with the 8253/54 chip, the hardware limits
you to positive polarity pulses. Furthermore, the value loaded in the count
register is divided equally to create phase 1 and phase 2. This means you
will always get a 0.5 duty cycle if the count register is loaded with an even
number. If you load the count register with an odd number, phase 1 will be
longer than phase 2 by one cycle of the counter CLK signal.

Now that you know the terms involving generating a single square pulse or
a pulse train, you can learn about the LabVIEW VIs and the physical
connections needed to implement your application.

Generating a Single Square Pulse
You can use a single pulse to trigger analog acquisition or to gate another
counter operation. You also can use a single pulse to stimulate a device or
circuit for which you need to acquire and test the response.

TIO-ASIC, DAQ-STC, Am9513
Figure 10-7 shows two ways to connect your counter to generate a square
pulse. In the Basic Connection, the edges of the internal SOURCE signal
are counted to generate the output signal, the GATE is not used (software
start), and the pulse signal on the OUT pin gets connected to your device.
For optional connections, you will acquire an external SOURCE from your
device which is also gated by your device. You can use either or both of
these options.

counter starts

phase 1 phase 2
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Figure 10-7. Physical Connections for Generating a Square Pulse

Open the Generate Single Pulse (DAQ-STC), Generate Single Pulse
(NI-TIO), or Generate Delayed Pulse-Easy (9513) examples and study
their block diagrams.

The Generate Delayed Pulse VI, available on the Functions»Data
Acquisition»Counter palette, tells your device to generate a single
delayed pulse. This VI is self-contained and checks for errors
automatically. With the Generate Delayed Pulse VI, you must connect the
pulse delay (phase 1) and pulse width (phase 2) controls to define the
output pulse. Sometimes the actual delay and actual width are not the
same as you specified.

To gain more control over when the counter begins generating a single
square pulse, use Intermediate VIs instead of the Easy VIs. You also can use
the example Delayed Pulse-Int (9513) VI, available in the examples\
daq\counter\Am9513.llb. This example shows how to generate a
single pulse using Intermediate level VIs. The Delayed Pulse Generator
Config VI configures the counter, and the Counter Start VI generates the
TTL signal. An example of this is generating a pulse after meeting certain
conditions. If you use the Easy Counter VI, the VI configures and then
immediately starts the pulse generation. With the Intermediate VIs, you can
configure the counter long before the actual pulse generation begins. As
soon as you want a pulse to be generated, the counter can immediately
begin without having to configure the counter. In this situation, using

SOURCE

GATE

OUT

Count Register Your Device

SOURCE

GATE

OUT

Count Register Your DeviceYour Device

Basic Connection

Optional Connections



Chapter 10 High-Precision Timing (Counters/Timers)

LabVIEW Measurements Manual 10-10 www.ni.com

Intermediate VIs improves performance. You must stop the counter if you
want to use it for other purposes.

8253/54
Refer to the Delayed Pulse (8253) VI in the examples\daq\counter\
8253.llb for an example of how to generate a negative polarity pulse.
Due to the nature of the 8253/54 chip, three counters are used to generate
this pulse. Because only counter 0 is internally connected to a clock
source, it is used to generate the timebase. counter 1 is used to create the
pulse delay that gates counter 2. counter 2 is used to generate the pulse,
which occurs on the OUT pin. Using multiple counters requires external
wiring, which is shown in Figure 10-8 and described on the front panel of
the VI.

Figure 10-8. External Connections Diagram from
the Front Panel of Delayed Pulse (8253) VI

The block diagram uses a sequence structure to divide the basic tasks
involved. In frame 0 of the sequence all of the counters are reset. Notice
that counters 1 and 2 are reset so their output states start out high.

In frame 1 of the sequence, the counters are set up for different counting
modes. counter 0 is set up to generate a timebase using the ICTR Timebase
Generator subVI. counter 1 is set up to toggle its output (low-to-high)
when it reaches terminal count (TC). This toggled output is used to gate
counter 2. counter 2 is set up to output a low pulse when its gate goes high.

In frame 2 of the sequence, a delay occurs so the delayed pulse has time to
complete before the example can run again. This is useful if the example is
used as a subVI that is called repeatedly.

While this example works well for most pulses, it has limitations when your
pulse delay gets very short (in the microsecond range), or when the ratio of
pulse delay to pulse width gets very large.
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Generating a Pulse Train
There are two types of pulse trains: continuous and finite. You can use a
continuous pulse train as the SOURCE (CLK) of another counter or as the
clock for analog acquisition (or generation). You can use a finite pulse train
as the clock of an analog acquisition that acquires a predetermined number
of points, or to provide a finite clock to an external circuit.

Generating a Continuous Pulse Train
How you generate a continuous pulse varies depending upon which counter
chip your DAQ hardware has. If you are not sure which chip your device
uses, refer to your hardware manual.

TIO-ASIC, DAQ-STC, Am9513
Figure 10-9 shows how to connect your counter and device to generate a
continuous pulse train. The edges of the internal source signal are counted
to generate the output signal. You obtain the continuous pulse train for your
external device from the counter OUT pin. You also can gate the operation
with a signal connected to the GATE input pin. Instead of having an
internal timebase as your SOURCE, you can connect an external signal.

Figure 10-9. Physical Connections for Generating a Continuous Pulse Train

Open the Generate Pulse Train (DAQ-STC), Generate Pulse Train
(NI-TIO), or Cont Pulse Train-Easy (9513) VIs, available in the
examples\daq\counter library and study their block diagrams.

counter

your
device

your
devicegate

source
out
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8253/54
Figure 10-10 shows how to connect your counter and device to generate a
continuous pulse train. If you use counter 0, an internal source is counted
to generate the output signal. If you use counter 1 or 2, you will need to
connect your own source to the CLK pin. You obtain the continuous pulse
train for your external device from the counter OUT pin.

Figure 10-10. External Connections Diagram from the Front Panel
of Cont Pulse Train (8253) VI

Refer to the Cont Pulse Train (8253) VI in the examples\daq\counter\
8253.llb for an example of how to use the Generate Pulse Train (8253)
VI to generate a continuous pulse train. When using counter 0 with this VI,
you can specify the desired frequency. The actual frequency shows the
closest frequency to your desired frequency that the counter was able to
achieve. The actual duty cycle will be as close to 0.5 as possible for your
actual frequency. When using counter 1 or counter 2, you specify the
divisor factor N to be used to divide your supplied source. You also can
enter the user-supplied timebase if you want the VI to calculate your actual
frequency and actual duty cycle. When you click the STOP button, the
While Loop stops, and a call to ICTR Control resets the counter, stopping
the generation.

Generating a Finite Pulse Train
How you generate a finite pulse varies depending upon which counter chip
your DAQ hardware has. If you are not sure which chip your device uses,
refer to your hardware manual.

You can use the Easy I/O VI, Generate Pulse Train, or a stream of
Intermediate VIs to generate a finite pulse train. With either technique,
you must use two counters as shown in Figure 10-11. The maximum
number of pulses in the pulse train is 216–1 for Am9513 devices and 224–1
for DAQ-STC devices.
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Figure 10-11 shows the physical connections to produce a finite pulse train
on the OUT pin of a counter. counter generates the finite pulse train with
high-level gating. counter-1 provides counter with a long enough gate
pulse to output the number of desired pulses. You must externally connect
the OUT pin of the counter-1 to the GATE pin of counter. You also can
gate counter-1.

Figure 10-11. Physical Connections for Generating a Finite Pulse Train

Open the Finite Pulse Train (DAQ-STC), Finite Pulse Train (NI-TIO),
or Finite Pulse Train-Easy (9513) VIs, available in the examples\daq\
counter library, and study the block diagrams.

8253/54
Generating a finite pulse train with the 8253/54 chip uses all three counters.
Figure 10-12 shows how to externally connect your counters. Because
counter 0 is internally connected to a clock source, counter 0 is used to
generate the timebase used by counter 1 and counter 2. counter 1
generates a single low pulse used to gate counter 2. Because counter 2
must be gated with a high pulse, the output of counter 1 is passed through
a 7404 inverter chip prior to being connected to the GATE of counter 2.
counter 2 is set up to generate a pulse train at its OUT pin.

Figure 10-12. External Connections Diagram from the Front Panel
of Finite Pulse Train (8253) VI

Refer to the Finite Pulse Train (8253) VI in the examples\daq\
counter\8253.llb for an example of how to generate a finite pulse train.
This example uses a sequence structure to divide the basic tasks involved.
In frame 0 of the sequence, all of the counters are reset. Notice counter 1
is reset so its output state starts high.
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In frame 1 of the sequence, the counters are set up for different counting
modes. counter 0 is set up to generate a timebase using the ICTR Timebase
Generator VI. counter 1 is set up to output a single low pulse using the
ICTR Control VI. counter 2 is set up to output a pulse train using the ICTR
Timebase Generator VI.

In frame 2 of the sequence, a delay occurs so that the finite pulse train has
time to complete before the example can be run again. This is useful if the
example is used as a subVI where it may get called over and over.

Counting Operations When All Your Counters Are Used
The DAQ-STC and Am9513 have counting operations available even
when all the counters have been used.

DAQ-STC devices feature a FREQ_OUT pin, and Am9513 devices feature
an FOUT pin. You can generate a 0.5 duty cycle square wave on these pins
without using any of the available counters.

The CTR Control VI, available on the Functions»Data Acquisition»
Counter»Advanced Counter»AM9513 & Compatibility palette, enables
and disables the FOUT signal and sets the square wave frequency. The
square wave frequency is defined by the FOUT timebase signal divided by
the FOUT divisor.

Note If you are using NI-DAQ 6.5 or higher, National Instruments recommends you use
the new Advanced Counter VIs, such as Counter Group Config, Counter Get Attribute,
Counter Set Attribute, Counter Buffer Read, and Counter Control.

You also can refer to the Generate Pulse Train on FREQ_OUT VI in the
examples\daq\counter\DAQ-STC.llb or the Generate Pulse Train on
FOUT VI in the examples\daq\counter\Am9513.llb for examples of
how to generate a pulse train on these outputs.
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Knowing the Accuracy of Your Counters
When you generate a waveform, there can be an uncertainty of up to one
timebase period between the start signal and the first counted edge of the
timebase. This is due to the uncertainty in the exact relation of the start
signal, which the software calls or the gate signal supplies to the first edge
of the timebase, as shown in Figure 10-13.

Figure 10-13. Uncertainty of One Timebase Period

8253/54
In addition to the previously described uncertainty, the 8253/54 chip has an
additional uncertainty when used in mode 0. Mode 0 generates a low pulse
for a chosen number of clock cycles, but a software delay is involved. This
delay occurs because with mode 0 the counter output is set low by a
software write to the mode setting. Afterward the count can be loaded and
the counter starts counting down. The time between setting the output to
low and loading the count is included in the output pulse. This time was
found to be 20 µs when tested on a 200 MHz Pentium computer.

Stopping Counter Generations
You can stop a counting operation in several ways. You can restart a
counter for the same operation it just completed, you can reconfigure it to
do something else, or you can call a specific VI to stop it. All of these
methods allow you to use counters for different operations without
resetting the entire device.

phase 1 phase 2

uncertainty of
1 timebase period

output

timebase

starting
signal

1 timebase period
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DAQ-STC, Am9513
Figure 10-14 shows how to stop a counter using the Intermediate VI,
Counter Stop. Notice that the Wait+ (ms) VI is called before Counter Stop.
The Wait+ (ms) VI allows you to wire a time delay so that the previous
counter operation has time to complete before the Counter Stop VI is
called. The Wait+ (ms) and Counter Stop VIs are available on the
Functions»Data Acquisition»Counter»Intermediate Counter palette.

Figure 10-14. Using the Generate Delayed Pulse and Stopping the Counting Operation

To stop a generated pulse train, you can use another Generate Pulse
Train VI with the number of pulses input set to –1, shown in Figure 10-15.
This example expects that a pulse train is already being generated. The call
to Generate Pulse Train VI stops the counter, and the call to Generate
Delayed Pulse VI sets the counter up for a different operation.

Figure 10-15. Stopping a Generated Pulse Train

8253/54
Calling ICTR Control VI with a control code of 7 (reset) can stop a counter
on the 8253/54 chip.



Chapter 10 High-Precision Timing (Counters/Timers)

© National Instruments Corporation 10-17 LabVIEW Measurements Manual

Measuring Pulse Width
This section describes how you can use a counter to measure pulse width.
There are several reasons you may need to determine pulse width. For
example, to determine the duration of an event, set your application to
measure the width of a pulse that occurs during that event. Another
example is determining the interval between two events. In this case, you
measure the pulse width between the two events. An example of when you
might use this type of application is determining the time interval between
two boxes on a conveyor belt or the time it takes one box to be processed
through an operation. The event is an edge every time a box goes by a point,
which prompts a digital signal to change in value. All LabVIEW counter
examples are located in the labview\examples\daq\counter library.

Measuring a Pulse Width
You can measure an unknown pulse width by counting the number of
pulses of a faster known frequency that occur during the pulse to be
measured. Connect the pulse you want to measure to the GATE input pin
and a signal of known frequency to the SOURCE (CLK) input pin, as
shown in Figure 10-16. The pulse of unknown width (Tpw) gates the counter
configured to count a timebase clock of known period (Ts). The pulse width
equals the timebase period times the count, or: Tpw = Ts × count. The
SOURCE (CLK) input can be an external or internal signal.

Figure 10-16. Counting Input Signals to Determine Pulse Width

An internal signal is based upon the type of counter chip on your
DAQ device. With TIO-ASIC devices, you can choose internal timebases
of 20 MHz, 100 kHz, and a device-specific maximum timebase. With
DAQ-STC devices, you have a choice between internal timebases of
20 MHz and 100 kHz. With Am9513 devices, you can choose internal
timebases of 1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100 Hz. With 8253/54

GATE

SOURCE

OUT

Count Register

Ts

Tpw

frequency
source
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devices, the internal timebase is either 2 MHz or 1 MHz, depending on
which device you have.

Figure 10-17 shows how to physically connect the counter on your device
to measure pulse width.

Figure 10-17. Physical Connections for Determining Pulse Width

Determining Pulse Width
How you determine a pulse width depends upon which counter chip is
on your DAQ device. If you are not sure which counter chip your
DAQ device has, refer to your hardware user manual.

Open the Measure Pulse (DAQ-STC) and Measure Pulse (NI-TIO)
examples and study their block diagrams.

Am9513
Open the block diagram of the Measure Pulse-Easy (9513) VI, available on
the Functions»Data Acquisition»Counter palette. This VI uses the Easy
VI, Measure Pulse Width or Period.

The Measure Pulse Width or Period VI counts the number of cycles
of the specified timebase, depending on your choice from the type of
measurement menu located on the front panel of the VI. The measurement
menu choices for this VI are the following:

• Measure high pulse width

• Measure low pulse width

• Measure period (rising edge to rising edge)

• Measure period (falling edge to falling edge)

• High pulse width (multiple pulses, DAQ-STC)

• Low pulse width (multiple pulses, DAQ-STC)

counter

your
device gate

source
out



Chapter 10 High-Precision Timing (Counters/Timers)

© National Instruments Corporation 10-19 LabVIEW Measurements Manual

Either menu choice can be used to measure the width of a single pulse or to
measure a pulse within a train of multiple pulses. However, the pulse must
occur after the counter starts. Because the counter uses high-level gating, it
might be difficult to measure a pulse within a fast pulse train. If the counter
is started in the middle of a pulse, it measures the remaining width of that
pulse.

The timebase you choose determines how long a pulse you can measure
with the 16-bit counter. For example, the 100 Hz timebase allows you to
measure a pulse up to 216 × 10 ms = 655 seconds long. The 1 MHz timebase
allows you to measure a pulse up to 65 ms long. Because a faster timebase
yields a more accurate pulse-width measurement, it is best to use the fastest
timebase possible without the counter reaching terminal count (TC).

The valid? output of the example VI indicates whether the counter
measured the pulse without overflowing (reaching TC). However, valid?
does not tell you whether a whole pulse was measured when measuring a
pulse within a pulse train.

8253/54
Open the block diagram of the Measure Short Pulse Width (8253) VI
located in the examples\daq\counter\8253.llb.

This VI counts the number of cycles of the internal timebase of Counter 0
to measure a high pulse width. You can measure a single pulse or a pulse
within a train of multiple pulses. However, the pulse must occur after the
counter starts. This means it may be difficult to measure a pulse within a
fast pulse train because the counter uses high-level gating. To measure a
low pulse width, insert a 7404 inverter chip between your pulse source and
the GATE input of counter 0.

On the Measure Short Pulse Width (8253) VI block diagram, the first call
to ICTR Control VI sets up counting mode 4, which tells the counter to
count down while the gate input is high. The Get Timebase (8253) VI is
used to get the timebase of your DAQ device. A DAQ device with an
8253/54 counter has an internal timebase of either 1 MHz or 2 MHz,
depending on the device. Inside the While Loop, ICTR Control VI is called
to continually read the count register until one of four conditions are met:

• The count register value has decreased but is no longer changing.
It is finished measuring the pulse.

• The count register value is greater than the previously read value.
An overflow has occurred.
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• An error has occurred.

• Your chosen time limit has been reached.

After the While Loop, the final count is subtracted from the originally
loaded count of 65,535 and multiplied by the timebase period to yield the
pulse width. Finally, the last ICTR Control VI resets the counter. Notice
that this VI uses only Counter 0. If Counter 0 has an internal timebase of
2 MHz, the maximum pulse width you can measure is 216 × 0.5 µs = 32 ms.
Refer to the information found in Context Help for a complete description
of this example.

Controlling Your Pulse Width Measurement
How you control your pulse-width measurement depends upon which
counter chip is on your DAQ device. If you are not sure which counter chip
your DAQ device has, refer to your hardware user manual.

TIO-ASIC, DAQ-STC, or Am9513
Figure 10-18 shows one approach to measuring pulse width using the
Intermediate VIs Pulse Width or Period Meas Config, Counter Start,
Counter Read, and Counter Stop. You can use these VIs to control when
the measurement of the pulse widths begins and ends. The Pulse Width or
Period Config VI configures a counter to count the number of cycles of a
known internal timebase. The Counter Start VI begins the measurement.
The Counter Read VI determines if the measurement is complete and
displays the count value. After the While Loop is stopped, the Counter
Stop VI stops the counter operation. Finally, the General Error Handler VI
notifies you of any errors.

Figure 10-18. Measuring Pulse Width with Intermediate VIs
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Buffered Pulse and Period Measurement
With the TIO-ASIC and DAQ-STC chips, LabVIEW provides a buffer for
counter operations. You typically use buffered counter operations when
you have a gate signal to trigger a counter several times.

Open the Measure Buffered Pulse (DAQ-STC) and Measure Buffered Pulse
(NI-TIO) examples in the examples\daq\counter library and study the
block diagrams.

Note If you are using NI-DAQ 6.5 or higher, National Instruments recommends you use
the new Advanced Counter VIs, such as Counter Group Config, Counter Get Attribute,
Counter Set Attribute, Counter Buffer Read, and Counter Control.

Increasing Your Measurable Width Range
The maximum counting range of a counter and the chosen internal
timebase determine how long of a pulse width can be measured. The
internal timebase acts as the SOURCE. When measuring the pulse width of
a signal, you count the number of source edges that occur during the pulse
being measured. The counted number of SOURCE edges cannot exceed the
counting range of the counter. Slower internal timebases allow you to
measure longer pulse widths, but faster timebases give you a more accurate
pulse-width measurement. If you need a slower timebase than is available
on your counter as shown in Table 10-1, set up an additional counter for
pulse-train generation and use the OUT of that counter as the SOURCE of
the counter measuring pulse width.

Table 10-1. Internal Counter Timebases and Their Corresponding Maximum
Pulse Width, Period, or Time Measurements

Counter Type
Internal

Timebases
Maximum

Measurement

TIO-ASIC 80 MHz* 53.69 s

20 MHz 214.748 s

100 kHz 11 h 55 m 49.67 s

DAQ-STC 20 MHz 838 ms

100 kHz 167 s
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Measuring Frequency and Period
This section describes the various ways you can measure frequencies and
periods of TTL signals using the counters on your DAQ device. One cycle
of a signal, known as the period, is measured in units of time, usually
seconds. The inverse of period is frequency, which is measured in cycles
per second or hertz (Hz). The rate of your signal and the type of counter
on your DAQ device determine whether you use frequency or period
measurement. An example of when you would want to know the frequency
of a signal is if you need to monitor the shaft speed of a motor.

Knowing How and When to Measure Frequency and Period
A common way to measure the frequency of a signal is to measure the
number of pulses that occur during a known time period. Figure 10-19
illustrates the measurement of a pulse train of an unknown frequency (fs)
by using a pulse of a known width (TG). The frequency of the waveform
equals the count divided by the known pulse width (frequency = count/TG).
The period is the reciprocal of the measured frequency (period = 1/fs). You
typically use frequency measurement for high-frequency signals where the
signal to be measured is approaching or faster than the chosen internal
timebase.

Am9513 1 MHz 65 ms

100 kHz 655 ms

10 kHz 6.5 s

1 kHz 65 s

100 Hz 655 s

8253/54 2 MHz** 32 ms

1 MHz** 65 ms

* Some devices have a maximum timebase of 20 MHz.

** A DAQ device with an 8253/54 counter has one of these internal timebases available
on counter 0, but not both.

Table 10-1. Internal Counter Timebases and Their Corresponding Maximum
Pulse Width, Period, or Time Measurements (Continued)

Counter Type
Internal

Timebases
Maximum

Measurement
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Figure 10-19. Measuring Square Wave Frequency

TIO-ASIC, DAQ-STC, Am9513
For period measurement, you count the number of pulses of a known
frequency (fs) during one period of the signal to be measured. As shown
in Figure 10-20, the signal of a known frequency is connected to the
SOURCE, and the signal to be measured is connected to the GATE.
The period is the count divided by the known frequency (TG = count/fs).

Figure 10-20. Measuring a Square Wave Period

You typically use period measurement for low-frequency signals where
the signal to be measured is significantly slower than the chosen internal
timebase. The internal timebases for the TIO-ASIC are 20 MHz, 100 kHz,
and a device-specific maximum timebase. The internal timebases for the
DAQ-STC are 20 MHz and 100 kHz. The internal timebases for the
Am9513 are 1 MHz, 100 kHz, 10 kHz, 1 kHz, and 100 Hz. Whether you
use period measurement or frequency measurement, you always can obtain

GATE
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Count Register
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the other measurement by taking the inverse of the current one as shown in
the following equations.

8253/54
The 8253/54 chip does not support period measurement, but you can use
frequency measurement for a pulse train and take the inverse to get the
period. The frequency examples discussed in this chapter calculate the
period for you.

Connecting Counters to Measure Frequency and Period
Figure 10-21 shows typical external connections for measuring frequency.
In the figure, your device provides the signal with the frequency to be
measured to the SOURCE (CLK) of counter. It optionally can control the
GATE of counter-1. The OUT of counter-1 supplies a known pulse to the
GATE of counter. Finally, counter counts the number of cycles of the
unknown pulse during the known GATE pulse.

Figure 10-21. External Connections for Frequency Measurement

period measurement
1

frequency measurement
------------------------------------------------------------=

frequency measurement
1

period measurement
---------------------------------------------------=
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TIO-ASIC, DAQ-STC, Am9513
Figure 10-22 shows typical external connections for measuring period.
In the figure, your device provides the signal with the period to be
measured to the GATE of counter. A timebase of known frequency is
supplied to the SOURCE. This usually is an internal timebase, but it can
be externally supplied. The counting range of your counter must not be
exceeded during the period measurement. The range of the Am9513 is
65,335; the range of the DAQ-STC is 16,777,216; and the range of the
TIO-ASIC is 232–1. If the counting range is exceeded, select a slower
internal timebase.

Figure 10-22. External Connections for Period Measurement

Measuring the Frequency and Period of High-Frequency Signals
How you measure the frequency and period of high-frequency signals
(higher than 1000 Hz) depends on the counter chip on your DAQ device. If
you are not sure which chip your DAQ device has, refer to your hardware
user manual.

TIO-ASIC, DAQ-STC
Open the Measure Frequency (DAQ-STC) and Measure Frequency
(NI-TIO) VIs in the examples\daq\counter library and study the block
diagrams.

The counter counts the number of rising edges of a TTL signal at the
SOURCE of counter during a known pulse at the GATE of counter. The
width of that known pulse is determined by gate width. Frequency is the
output for this example, and period is calculated by taking the inverse of
the frequency.

Am9513
Refer to the Measure Frequency-Easy (9513) VI in the examples\daq\
counter\Am9513.llb for an example of how to use the Easy VI,
Measure Frequency, available on the Functions»Data Acquisition»
Counter palette.
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This VI initiates the counter to count the number of rising edges of a
TTL signal at the SOURCE of counter during a known pulse at the GATE
of counter. The width of that known pulse is determined by gate width.
Frequency is the output for this example, and period is calculated by
taking the inverse of the frequency. The valid? output lets you know if
the measurement completed without an overflow. The number of counters
to use input lets you choose one counter for 16-bit measurement or two
counters for 32-bit measurement. Remember, you must externally
wire your signal to be measured to the SOURCE of counter, and the OUT
of counter-1 must be wired to the GATE of counter.

TIO-ASIC, DAQ-STC, Am9513
If you need more control over when your frequency measurement begins
and ends, use the Intermediate VIs instead of the Easy VIs. Figure 10-23
shows one approach for this that uses the Event or Time Counter Config,
Adjacent Counters, Delayed Pulse Generator Config, Counter Start,
CTR Control, Counter Read, and Counter Stop VIs. The Delayed Pulse
Generator Config VI configures counter to count the number of pulses
while its GATE is high. The Adjacent Counters VI is used to determine the
correct counter-1. The Delayed Pulse Generator Config VI then configures
counter-1 to generate a single pulse for the GATE signal. The Counter
Start VI begins the counting operation for counter first, then counter-1.
The CTR Control VI is an Advanced VI that is used to check if the GATE
pulse has completed. The Counter Read VI returns the count value from
counter, which is used to determine the frequency and pulse width. Finally,
the Counter Stop VI stops the counter operation.

Figure 10-23. Frequency Measurement Example Using Intermediate VIs
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8253/54
Refer to the Measure Hi Frequency (8253) VI in the examples\daq\
counter\8253.llb for an example of how to initiate the counter to count
the number of rising edges of a TTL signal at the CLK of counter during a
known pulse at the GATE of counter. The known pulse is created by
counter 0, and its width is determined by gate width. The maximum width
of the pulse is 32 ms if your DAQ device has a 2 MHz internal timebase,
and 65 ms if your DAQ device has a 1 MHz internal timebase. This
maximum pulse is why this example only reads frequencies higher than
1 kHz. A frequency of 1 kHz generates 32 cycles during the 32 ms pulse.
As this cycle count decreases (as with lower frequencies), the frequency
measurement becomes less accurate. Frequency is the output for this
example, and period is determined by taking the inverse of the frequency.
You must externally wire the signal to be measured to the CLK of counter,
and the OUT of counter 0 must be wired through a 7404 inverter chip to
the GATE of counter.

Notice the ICTR Control, Get Timebase (8253), and Wait + (ms) VIs on
the block diagram. The first two ICTR Control VIs reset counter and
counter 0. The next ICTR Control sets up counter to count down while
its GATE input is high. The Get Timebase (8253) VI returns the internal
timebase period for counter 0 of the device. This value is multiplied by the
gate width to yield the count to be loaded into the count register of
counter 0. The next ICTR Control VI loads this count and sets up
counter 0 to output a low pulse, during which cycles of the signal to be
measured are counted.

One advantage of this example is that it uses only two counters. However,
this example has two notable limitations. One limitation is that it cannot
accurately measure low frequencies. Refer to the Measure Lo Frequency
(8253) VI in the examples\daq\counter\8253.llb if you need to
measure lower frequencies. This VI uses three counters. The other
limitation is that there is a software dependency, which causes counter 0 to
output a pulse slightly longer than the count it is given. This is the nature of
the 8253 chip, and it can increase the readings of high frequencies. Use the
Measure Hi Frequency–DigStart (8253) VI in the examples\daq\
counter\8253.llb to avoid this software delay.
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Measuring the Period and Frequency of Low-Frequency Signals
How you measure the period and frequency of low-frequency signals
(lower than 1000 Hz) depends on which counter chip is on your DAQ
device. If you are not sure which chip your DAQ device has, refer to your
hardware documentation.

TIO-ASIC, DAQ-STC
Open the Measure Period (DAQ-STC) and Measure Period (NI-TIO) VIs,
available in the examples\daq\counter library, and study the block
diagrams.

You connect your signal of unknown period to the GATE of counter.
The counter measures the period between successive rising edges of your
TTL signal by counting the number of internal timebase cycles that occur
during the period. The period is the count divided by the timebase. The
frequency is determined by taking the inverse of the period. You must
choose timebase such that the counter does not reach its highest value,
or terminal count (TC).

Am9513
Refer to the Measure Period-Easy (9513) VI, in the examples\daq\
counter\Am9513.llb for an example of how to use the Easy VI,
Measure Pulse Width or Period, available on the Functions»
Data Acquisition»Counter palette.

You connect your signal of unknown period to the GATE of counter. The
counter measures the period between successive rising edges of your TTL
signal by counting the number of internal timebase cycles that occur during
the period. The period is the count divided by the timebase. The frequency
is determined by taking the inverse of the period. The valid? output
indicates if the period was measured without overflow. Overflow occurs
when the counter reaches its highest value, or terminal count (TC). You
must choose timebase such that it does not reach TC. With a timebase of
1 MHz, the Am9513 can measure a period up to 65 ms. With a timebase of
100 Hz, you can measure a period up to 655 seconds.
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TIO-ASIC, DAQ-STC, Am9513
If you need more control over when period measurement begins and ends,
use the Intermediate VIs instead of the Easy VIs. Figure 10-24 shows how
to measure period and frequency.

Figure 10-24. Measuring Period Using Intermediate Counter VIs

The Intermediate VIs used in Figure 10-24 include Pulse Width or Period
Meas Config, Counter Start, Counter Read, and Counter Stop. The Pulse
Width or Period Meas Config VI configures the counter for period
measurement. The Counter Start VI begins the counting operation. The
Counter Read VI returns the count value from the counter, which is used to
determine the period and frequency. The Counter Stop VI stops the counter
operation.

8253/54
The 8253/54 chip does not support period measurement, but you can
use frequency measurement for a pulse train and take the inverse to get
the period. The Measure Lo Frequency (8253) VI, available in the
examples\daq\counter\8253.llb, measures frequency
and calculates the period for you.
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Counting Signal Highs and Lows
This section describes the various ways you can count TTL signals using
the counters on your DAQ device. Counters can count external events such
as rising and falling edges on the SOURCE (CLK) input pin. They also
can count elapsed time using the rising and falling edges of an internal
timebase. An example of counting events is calculating the output of a
production line. An example of counting time is calculating how long it
takes to produce one item on a production line.

Connecting Counters to Count Events and Time
Figure 10-25 shows typical external connections for counting events. In
the figure, your device provides the TTL signal to be counted, and it is
connected to the SOURCE (CLK) of counter. The number of events
counted is determined by reading the count register of counter.

Figure 10-25. External Connections for Counting Events

Figure 10-26 shows typical external connections for counting elapsed
time. In the figure, your device provides a pulse to the GATE of counter.
While the gate pulse is high, counter counts a known internal timebase.
Dividing the count by the internal timebase determines the elapsed time.

Figure 10-26. External Connections for Counting Elapsed Time

Am9513
With the Am9513, you can extend the counting range of a counter by
connecting the OUT of one counter to the SOURCE of the next higher
order counter (counter+1). This is called cascading counters. By cascading
counters you can increase your counting range from a 16-bit counting range
of 65,535 to a 32-bit counting range of 4,294,967,295. The Am9513 chip
has a set of five counters where higher-order counters can be cascaded. The
TIO-10 device has two Am9513 chips for a total of 10 counters. Table 10-2
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identifies adjacent counters on the Am9513 (one and two chips). This
information is useful when cascading counters.

Figure 10-27 shows typical external connections for cascading counters
when counting events. Notice that the OUT of counter is connected to the
SOURCE of counter+1.

Figure 10-27. External Connections to Cascade Counters for Counting Events

Figure 10-28 shows typical external connections for cascading counters
when counting elapsed time. Notice that the OUT of counter is connected
to the SOURCE of counter+1.

Figure 10-28. External Connections to Cascade Counters for Counting Elapsed Time

Table 10-2. Adjacent Counters for Counter Chips

Next Lower Counter Counter Next Higher Counter

5 1 2

1 2 3

2 3 4

3 4 5

4 5 1

10 6 7

6 7 8

7 8 9

8 9 10

9 10 6
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Counting Events
How you count events depends upon which counter chip is on your
DAQ device. If you are not sure which counter your DAQ device has,
refer to your hardware user manual.

TIO-ASIC, DAQ-STC
Open the Count Edges (DAQ-STC) and Count Edges (NI-TIO) VIs in the
daq\examples\counter library and study the block diagrams.

Am9513
The Count Events-Easy (9513) VI, available in the examples\daq\
counter\Am9513.llb, uses the Easy VI, Count Events or Time,
available on the Functions»Data Acquisition»Counter palette.

This VI initiates the counter to count the number of rising edges of a
TTL signal at the SOURCE of counter. The counter continues counting
until you click the STOP button. You must externally wire your signal to
be counted to the SOURCE of counter. Additionally, you can cascade two
counters by choosing two counters (32-bits) in the number of counters to
use menu. This extends your counting range to over 4 billion. You must
also wire the OUT of counter to the SOURCE of counter+1 for this
increased counting range.

If you need more control over when your event counting begins and
ends, use the Intermediate VIs instead of the Easy VIs. Refer to the Count
Events-Int (9513) VI in the examples\daq\counter\Am9513.llb for
an example of using Intermediate VIs for more control over when your
event counting begins and ends.

This example uses the Intermediate VIs Event or Time Counter Config,
Counter Start, Counter Read, and Counter Stop. The Event or Time Counter
Config VI configures counter to count the number of rising edges of a TTL
signal at its SOURCE input pin. The Counter Start VI begins the counting
operation for counter. The Counter Read VI returns the count until you
click the STOP button or an error occurs. Finally, the Counter Stop VI
stops the counter operation. You must externally wire your signal to be
counted to the SOURCE of counter. You also can gate counter with a pulse
to control when it starts and stops counting. To do this, wire your pulse to
the GATE of counter, and choose the appropriate gate mode from the front
panel menu. Additionally, you can cascade two counters by choosing two
counters (32-bits) in the number of counters to use menu. This extends
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your counting range to over 4 billion. You must also wire the OUT of
counter to the SOURCE of counter+1 for this increased counting range.

8253/54
The Count Events (8253) VI, available in the examples\daq\
counter\8253.llb, uses the Intermediate VI, ICTR Control, available
on the Functions»Data Acquisition»Counter»Intermediate Counter
palette.

This VI initiates the counter to count the number of rising edges of a
TTL signal at the CLK of counter. Looking at the block diagram, the first
call to ICTR Control loads the count register and sets up counter to count
down. The second call to ICTR Control reads the count register. Inside the
first While Loop, the count is read until it changes. While the count register
has previously been loaded, the new value is not active until the first edge
is counted on the CLK pin. Once the first edge comes in, the second While
Loop takes over and continually reads the count until you click the STOP
button or an error occurs. You must externally wire your signal to be
counted to the CLK of counter.

Counting Elapsed Time
How you count elapsed time depends upon which counter chip is on your
DAQ device. If you are not sure which chip your DAQ device has, refer to
your hardware user manual.

TIO-ASIC, DAQ-STC
Open the Count Time-Easy (DAQ-STC) and Count Edges (NI-TIO) VIs,
available in the examples\daq\counter library, and study the block
diagrams.

The counter is incremented by every rising edge of its source, typically a
known internal timebase, and the elapsed time is calculated by the value of
counter times the period of the internal timebase.

Am9513
The Count Time-Easy (9513) VI, available in the examples\daq\
counter\Am9513.llb, uses the Easy VI, Count Events or Time,
available on the Functions»Data Acquisition»Counter palette.

This VI initiates the counter to count the number of rising edges of a known
internal timebase at the SOURCE of counter. The Count Events or
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Time VI takes care of dividing the count by the timebase frequency to
determine the elapsed time. The counter continues timing until you click
the STOP button. You do not need to make any external connections if the
number of counters to use menu is set to one counter (16-bits). If you set
the number of counters to use menu to two counters (32-bits), you must
externally wire the OUT of counter to the SOURCE of counter+1. The
length of time that can be counted depends on the maximum count of the
counter(s) and the chosen timebase. For example, the 65,535 (16-bit) count
of the Am9513 and a timebase of 1 MHz can count time for 65 ms. Using
the 100 Hz timebase and two counters (32-bits), you can count time for over
a year.

If you need more control over when your elapsed timing begins and
ends, use the Intermediate VIs instead of the Easy VIs. Refer to the Count
Time-Int (9513) VI in the examples\daq\counter\Am9513.llb for an
example of how to use Intermediate VIs when you need more control over
when your elapsed timing begins and ends.

This example uses the Intermediate VIs Event or Time Counter Config,
Counter Start, Counter Read, and Counter Stop. The Event or Time Counter
Config VI configures counter to count the number of rising edges of a
known internal timebase. The Counter Start VI begins the counting
operation for counter. The Counter Read VI returns the count until you
click the STOP button or an error occurs. The count value is divided by the
timebase to determine the elapsed time. Finally, the Counter Stop VI stops
the counter operation. You also can gate counter with a pulse to control
when it starts and stops timing. To do this, wire your pulse to the GATE of
counter, and choose the appropriate gate mode from the front panel menu.
Additionally, you can cascade two counters by choosing two counters
(32-bits) in the number of counters to use menu. This extends your
elapsed time range. You must also wire the OUT of counter to the
SOURCE of counter+1 for this increased range.

8253/54
The Count Time (8253) VI, available in the examples\daq\
counter\8253.llb, uses the ICTR Control VI, available on the
Functions»Data Acquisition»Counter»Intermediate Counter
palette.

This VI initiates the counter to count the number of rising edges of a
TTL timebase at the CLK of counter. Counter 0 creates the timebase.
Looking at the block diagram, the Timebase Generator (8253) VI sets up
Counter 0 to generate a timebase by dividing down its internal timebase.
The first call to ICTR Control loads the count register and sets up counter
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to count down. Inside the While Loop, ICTR Control reads the count,
which is divided by the actual timebase frequency to determine the elapsed
time. The elapsed time increments until you click the STOP button or an
error occurs. The last two calls to ICTR Control reset Counter 0 and
counter. Remember, you must externally wire the OUT of Counter 0 to the
CLK of counter. You also can gate counter with a pulse to control when it
starts and stops timing. To do this, wire your pulse to the GATE of counter.
Refer to the information found in the Context Help for a complete
description of this example.

Dividing Frequencies
Dividing TTL frequencies is useful if you want to use an internal timebase
and the frequency you need does not exist. You can divide an existing
internal frequency to get what you need. You also can divide the frequency
of an external TTL signal. Frequency division results in a pulse or pulse
train from a counter for every N cycles of an internal or external source.
Counters can only decrease (divide down) the frequency of the source
signal. The resulting frequency is equal to the input frequency divided
by N (timebase divisor). N must be an integer number greater than 1.
Performing frequency division on an internal signal is called a down
counter. Frequency division on an external signal is called a signal divider.
Figure 10-29 shows typical wiring for frequency division.

Figure 10-29. Wiring Your Counters for Frequency Division
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TIO-ASIC or DAQ-STC
Open the Generate Pulse Train (DAQ-STC) and Generate Pulse Train
(NI-TIO) VIs, available in the examples\daq\counter library and study
the block diagrams.

Am9513
Figure 10-30 shows an example of a signal divider. It uses the Intermediate
counter VIs Down Counter or Divide Config, Counter Start, and
Counter Stop.

Figure 10-30. Programming a Single Divider for Frequency Division

The Down Counter or Divide Config VI configures the specified counter to
divide the SOURCE signal by the timebase divisor value and output a
signal when the counter reaches its terminal count (TC). Using Down
Counter or Divide Config VI, you can configure the type of output to be
pulsed or toggled. The block diagram in Figure 10-30 outputs a high pulse
lasting one cycle of the source signal once the counter reaches its TC. The
previous block diagram counts the rising edges of the SOURCE signal, the
default value of the source edge input.

The Counter Start VI tells the counter to start counting the SOURCE signal
edges. The counter stops the frequency division only when you click the
STOP button. The Counter Stop VI stops the counter immediately and
clears the count register. It is a good idea to always check your errors at the
end of an operation to see if the operation was successful.

You can alter the Down Counter or Divide Config VI to create a
down counter. To do this, change the timebase value from 0.0
(external SOURCE) to a frequency available on your counter. With the
Am9513 chip, you can choose timebases of 1 MHz, 100 kHz, 10 kHz,
1 kHz, and 100 Hz. With the DAQ-STC chip, you can choose timebases
of 20 MHz and 100 kHz.
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Instead of triggering frequency division for signal dividers and down
counters by software, as previously described, you can trigger using the
GATE signal. You can trigger while the GATE signal is high, low, or on the
rising or falling edge.

8253/54
To divide a frequency with the 8253/54 counter chip, use the example Cont
Pulse Train (8253) VI, available in the examples\daq\8253.llb.
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Part III

Measurement Analysis in LabVIEW

This part explains how to analyze your measurements in LabVIEW.

Part III, Measurement Analysis in LabVIEW, contains the following
chapters:

• Chapter 11, Introduction to Measurement Analysis in LabVIEW,
introduces digital signal processing and the LabVIEW Analysis VIs.

• Chapter 12, DC/RMS Measurements, describes how to use the two
most common measurements of a signal.

• Chapter 13, Frequency Analysis, explains how to analyze dynamic
signals using frequency analysis.

• Chapter 14, Distortion Measurements, explains harmonic distortion,
THD, and SINAD.

• Chapter 15, Limit Testing, explains how to use limit testing, or mask
testing, to monitor a waveform.

• Chapter 16, Digital Filtering, explains various types of filters you can
use and how to decide which one to use.

• Chapter 17, Signal Generation, describes common test signals and
how you can generate them.
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11
Introduction to Measurement
Analysis in LabVIEW

Digital signals are everywhere in the world around us. Telephone
companies use digital signals to represent the human voice. Radio, TV,
and hi-fi sound systems are all gradually converting to the digital domain
because of its superior fidelity, noise reduction, and signal processing
flexibility. Data is transmitted from satellites to earth ground stations
in digital form. NASA’s pictures of distant planets and outer space are
often processed digitally to remove noise and extract useful information.
Economic data, census results, and stock market prices are all available in
digital form. Because of the many advantages of digital signal processing,
analog signals are also converted to digital form before they are processed
with a computer.

This chapter provides a background in basic digital signal processing and
an introduction to the LabVIEW Measurement Analysis VIs.

The Importance of Data Analysis
The importance of integrating analysis libraries into engineering stations is
that the raw data, as shown Figure 11-1, does not always immediately
convey useful information. Often you must transform the signal, remove
noise disturbances, correct for data corrupted by faulty equipment, or
compensate for environmental effects, such as temperature and humidity.

Figure 11-1. Raw Data



Chapter 11 Introduction to Measurement Analysis in LabVIEW

LabVIEW Measurements Manual 11-2 www.ni.com

By analyzing and processing the digital data, you can extract the useful
information from the noise and present it in a form more comprehensible
than the raw data, as shown in Figure 11-2.

Figure 11-2. Processed Data

The LabVIEW block diagram programming approach and the extensive set
of LabVIEW Measurement Analysis VIs simplify the development of
analysis applications.

The LabVIEW Measurement Analysis VIs give you the most recent data
analysis techniques using VIs that you can wire together. Instead of
worrying about implementation details for analysis routines, as you do in
conventional programming languages, you can concentrate on solving your
data analysis problems.

Data Sampling

Sampling Signals
To use digital signal processing techniques, you must first convert an
analog signal into its digital representation. In practice, this is implemented
by using an analog-to-digital (A/D) converter. Consider an analog signal
x(t) that is sampled every ∆t seconds. The time interval ∆t is known as the
sampling interval or sampling period. Its reciprocal, 1/∆t, is known as the
sampling frequency, with units of samples/second. Each of the discrete
values of x(t) at t = 0, ∆t, 2∆t, 3∆t, etc., is known as a sample. Thus, x(0),
x(∆t), x(2∆t), ...., are all samples. The signal x(t) can thus be represented by
the discrete set of samples

{x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), … }
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Figure 11-3 below shows an analog signal and its corresponding sampled
version. The sampling interval is ∆t. Observe that the samples are defined
at discrete points in time.

Figure 11-3. Analog Signal and Corresponding Sampled Version

The following notation represents the individual samples:

x[i] = x(i∆t)

for

i = 0, 1, 2, …

If N samples are obtained from the signal x(t), then x(t) can be represented
by the sequence

X = {x[0], x[1], x[2], x[3], …, x[N–1] }

This is known as the digital representation or the sampled version of x(t).
Note that the sequence X = {x[i]} is indexed on the integer variable i, and
does not contain any information about the sampling rate. So by knowing
just the values of the samples contained in X, you will have no idea of what
the sample rate is.

Sampling Considerations
A/D converters (ADCs) are an integral part of National Instruments
DAQ boards. One of the most important parameters of an analog input
system is the rate at which the DAQ device samples an incoming signal.
The sampling rate determines how often an analog-to-digital (A/D)
conversion takes place. A fast sampling rate acquires more points in a given
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time and can therefore often form a better representation of the original
signal than a slow sampling rate. Sampling too slowly may result in a poor
representation of your analog signal. Figure 11-4 shows an adequately
sampled signal, as well as the effects of undersampling. The effect of
undersampling is that the signal appears as if it has a different frequency
than it truly does. This misrepresentation of a signal is called an alias.

Figure 11-4. Aliasing Effects of an Improper Sampling Rate

According to Shannon’s theorem, to avoid aliasing you must sample at a
rate greater than twice the maximum frequency component in the signal
you are acquiring. For a given sampling rate, the maximum frequency that
can be represented accurately, without aliasing, is known as the Nyquist
frequency. The Nyquist frequency is one half the sampling frequency.
Signals with frequency components above the Nyquist frequency will
appear aliased between DC and the Nyquist frequency. The alias frequency
is the absolute value of the difference between the frequency of the input
signal and the closest integer multiple of the sampling rate. Figures 11-5
and 11-6 illustrate this phenomenon. For example, assume fs, the sampling
frequency, is 100 Hz. Also, assume the input signal contains the following
frequencies—25 Hz, 70 Hz, 160 Hz, and 510 Hz. These frequencies are
shown in Figure 11-5.

Adequately Sampled Signal

Aliased Signal Due to Undersampling
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Figure 11-5. Actual Signal Frequency Components

In Figure 11-6, we see that frequencies below the Nyquist frequency
(fs/2=50 Hz) are sampled correctly. Frequencies above the Nyquist
frequency appear as aliases. For example, F1 (25 Hz) appears at the correct
frequency, but F2 (70 Hz), F3 (160 Hz), and F4 (510 Hz) have aliases at
30 Hz, 40 Hz, and 10 Hz, respectively. To calculate the alias frequency, use
the following equation:

Alias Freq. = ABS (Closest Integer Multiple
of Sampling Freq. – Input Freq.)

where ABS means “the absolute value.” For example,

Alias F2 = |100 – 70| = 30 Hz
Alias F3 = |(2)100 – 160| = 40 Hz
Alias F4 = |(5)100 – 510| = 10 Hz

Figure 11-6. Signal Frequency Components and Aliases
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A question often asked is, “How fast should I sample?” Your first thought
may be to sample at the maximum rate available on your DAQ device.
However, if you sample very fast over long periods of time, you may not
have enough memory or hard disk space to hold the data. Figure 11-7
shows the effects of various sampling rates. In case a, the sine wave of
frequency f is sampled at the same frequency fs (samples/sec) = f
(cycles/sec), or at 1 sample per cycle. The reconstructed waveform appears
as an alias at DC. As you increase the sampling to 7 samples/4 cycles, as in
case b, the waveform increases in frequency, but aliases to a frequency less
than the original signal (3 cycles instead of 4). The sampling rate in case b
is fs = 7/4 f. If you increase the sampling rate to fs = 2f, the digitized
waveform has the correct frequency (same number of cycles), and can be
reconstructed as the original sinusoidal wave, as shown in case c. For
time-domain processing, it may be important to increase your sampling rate
so that the samples more closely represent the original signal. By increasing
the sampling rate to well above f, say to fs=10f, or 10 samples/cycle, you
can accurately reproduce the waveform, as shown in case d.

Figure 11-7. Effects of Sampling at Different Rates

Why Do You Need Anti-Aliasing Filters?
We have seen that the sampling rate should be at least twice the maximum
frequency of the signal that we are sampling. In other words, the maximum
frequency of the input signal should be less than or equal to half of the
sampling rate. But how do you ensure that this is definitely the case in

A) 1 sample/1 cycle

B) 7 samples/4 cycles

C) 2 samples/cycle

D) 10 samples/cycle
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practice? Even if you are sure that the signal being measured has an upper
limit on its frequency, pickup from stray signals (such as the powerline
frequency or from local radio stations) could contain frequencies higher
than the Nyquist frequency. These frequencies may then alias into the
desired frequency range and thus give us erroneous results.

To be completely sure that the frequency content of the input signal is
limited, a low pass filter (a filter that passes low frequencies but attenuates
the high frequencies) is added before the sampler and the ADC. This filter
is called an anti-alias filter because by attenuating the higher frequencies
(greater than Nyquist), it prevents the aliasing components from being
sampled. Because at this stage (before the sampler and the ADC) we are
still in the analog world, the anti-aliasing filter is an analog filter.

An ideal anti-alias filter is as shown in Figure 11-8 (a).

Figure 11-8. Ideal versus Practical Anti-Alias Filter

It passes all the desired input frequencies (below f1) and cuts off all the
undesired frequencies (above f1). However, such a filter is not physically
realizable. In practice, filters look as shown in figure (b) above. They pass
all frequencies < f1, and cut-off all frequencies > f2. The region between
f1 and f2 is known as the transition band, which contains a gradual
attenuation of the input frequencies. Although you want to pass only
signals with frequencies < f1, those signals in the transition band could
still cause aliasing. Therefore, in practice, the sampling frequency should
be greater than two times the highest frequency in the transition band. So,
this turns out to be more than two times the maximum input frequency (f1).
That is one reason why you may see that the sampling rate is more than
twice the maximum input frequency.

Why Use Decibels?
On some instruments, you will see the option of displaying the amplitude
in a linear or decibel (dB) scale. The linear scale shows the amplitudes as
they are, whereas the decibel scale is a transformation of the linear scale
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into a logarithmic scale. We will now see why this transformation is
necessary.

Suppose that you want to display a signal with very large as well as very
small amplitudes. Let us assume you have a display of height 10 cm,
and will utilize the entire height of the display for the largest amplitude.
So, if the largest amplitude in the signal is 100 V, a height of 1 cm of the
display corresponds to 10 V. If the smallest amplitude of the signal is 0.1 V,
this corresponds to a height of only 0.1 mm. This will barely be visible on
the display.

To see all the amplitudes, from the largest to the smallest, you need to
change the amplitude scale. Alexander Graham Bell invented a unit, the
Bell, which is logarithmic, compressing large amplitudes and expanding
the small amplitudes. However, the Bell was too big of a unit, so commonly
the decibel (1/10th of a Bell) is used. The decibel (dB) is defined as

one dB = 10 log10 (Power Ratio) = 20 log10 (Voltage Ratio)

The Table 11-1 shows the relationship between the decibel and the Power
and Voltage Ratios.

Thus, you see that the dB scale is useful in compressing a wide range of
amplitudes into a small set of numbers.

Table 11-1. Decibels and Power and Voltage Ratio Relationship

dB Power Ratio Voltage Ratio

+40 10000 100

+20 100 10

+6 4 2

+3 2 1.4

0 1 1

–3 1/2 1/1.4

–6 1/4 1/2

–20 1/100 1/10

–40 1/10000 1/100
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12
DC/RMS Measurements

Two of the most common measurements of a signal are its direct current
(DC) and root mean square (RMS) levels. This chapter introduces
measurement analysis techniques for making DC and RMS measurements
of a signal.

What Is the DC Level of a Signal?
You can use DC measurements to define the value of a static or slowly
varying signal. DC measurements can be both positive and negative. The
DC value usually is constant within a specific time window. You can track
and plot slowly moving values, such as temperature, as a function of time
using a DC meter. In that case, the observation time that results in the
measured value has to be short compared to the speed of change for the
signal. Figure 12-1 illustrates an example DC level of a signal.

Figure 12-1. DC Level of a Signal

The DC level of a continuous signal V(t) from time t1 to time t2 is given by
the equation:

where t2 – t1 represents the integration time or measurement time.
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For digitized signals, the discrete-time version of the previous equation is
given by:

For a sampled system, the DC value is defined as the mean value of the
samples acquired in the specified measurement time window.

Between pure DC signals and fast-moving dynamic signals is a “gray zone”
where signals become more complex, and measuring the DC level of these
signals becomes quite challenging.

Real world signals often contain a significant amount of dynamic influence.
Often, you do not want the dynamic part of the signal. The DC
measurement identifies the static DC signal hidden in the dynamic signal,
for example, the voltage generated by a thermocouple in an industrial
environment, where external noise or hum from the main power can disturb
the DC signal significantly.

What Is the RMS Level of a Signal?
The RMS of a signal is the square root of the mean value of the squared
signal. RMS measurements are always positive. Use RMS measurements
when a representation of energy is needed. You usually acquire RMS
measurements on dynamic signals (signals with relatively fast changes)
like noise or periodic signals. Refer to the How to Measure AC Voltage
section in Chapter 4, Example Measurements, for more information about
when to use RMS measurements.

The RMS level of a continuous signal V(t) from time t1 to time t2 is given
by the equation:

where t2 – t1 represents the integration time or measurement time.
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The RMS level of a discrete signal Vi is given by the equation:

One difficulty is encountered when measuring the dynamic part of a signal
using an instrument that does not offer an AC-coupling option. A true RMS
measurement includes the DC part in the measurement, a measurement you
might not want.

Averaging to Improve the Measurement
Instantaneous DC measurements of a noisy signal can vary randomly and
significantly, as shown in Figure 12-2. You can measure a more accurate
value by averaging out the noise that is superimposed on the desired DC
level. In a continuous signal, the averaged value between two times, t1 and
t2, is defined as the signal integration between t1 and t2, divided by the
measurement time, t2 – t1, as shown in Figure 12-1. The area between the
averaged value Vdc and the signal that is above Vdc is equal to the area
between Vdc and the signal that is under Vdc. For a sampled signal, the
average value is the sum of the voltage samples divided by the
measurement time in samples, or the mean value of the measurement
samples. Refer to the Averaging a Scan Example section in Chapter 4,
Example Measurements, for more information about averaging in
LabVIEW.

Figure 12-2. Instantaneous DC Measurements
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An RMS measurement is an averaged quantity, because it is the average
energy in the signal over a measurement period. You can improve the RMS
measurement accuracy by using a longer averaging time, equivalent to the
integration time or measurement time.

There are several different strategies to use for making DC and RMS
measurements, each dependent on the type of error or noise sources.
When choosing a strategy, you must decide if accuracy or speed of the
measurement is more important.

Common Error Sources Affecting DC
and RMS Measurements

Some common error sources for DC measurements are single frequency
components (or tones), multiple tones, or random noise. These same error
signals can interfere with RMS measurements, so in many cases the
approach taken to improve RMS measurements is the same as for
DC measurements.

DC Overlapped with Single Tone
Consider the case where the signal you measure is composed of a DC signal
and a single sine tone. The average of a single period of the sine tone is
ideally zero, because the positive half-period of the tone cancels the
negative half-period.

Figure 12-3. DC Signal Overlapped with Single Tone

Any remaining partial period, shown in Figure 12-3 with vertical hatching,
introduces an error in the average value and, therefore, in the DC
measurement. Increasing the averaging time reduces this error, because the
integration is always divided by the measurement time t2 – t1. If you know
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the period of the sine tone, you can take a more accurate measurement of
the DC value by using a measurement period equal to an integer number of
periods of the sine tone. The most severe error occurs when the
measurement time is a half-period different from an integer number of
periods of the sine tone, because this is the maximum area under or over the
signal curve.

Defining the Equivalent Number of Digits
Defining the Equivalent Number of Digits (ENOD) makes it easier to relate
a measurement error to a number of digits, similar to digits of precision.
ENOD translates measurement accuracy into a number of digits.

ENOD = log10(Relative Error)

A 1 percent error corresponds to 2 digits of accuracy, and a 1 part per
million error corresponds to 6 digits of accuracy (log10(0.000001) = 6).

ENOD is only an approximation that tells you what order of magnitude of
accuracy you can achieve under specific measurement conditions.
This accuracy does not take into account any error introduced by the
measurement instrument or data acquisition hardware itself. ENOD only
gives you a tool for computing the reliability of a specific measurement
technique.

Thus, the ENOD should at least match the accuracy of the measurement
instrument or measurement requirements. For example, it is not necessary
to use a measurement technique with an ENOD of 6 digits if your
instrument has an accuracy of only 0.1 percent (3 digits). Similarly, you do
not get the six digits of accuracy from your 6-digit accurate measurement
instrument if your measurement technique is limited to an ENOD of only
3 digits.

DC Plus Sine Tone
Figure 12-4 shows that for a 1.0 VDC signal overlapped with a 0.5 V single
sine tone, the worst ENOD increases with measurement time, x-axis shown
in periods of the additive sine tone, at a rate of approximately 1 additional
digit for 10 times more measurement time. To achieve 10 times more
accuracy, you need to increase your measurement time by a factor of 10.
In other words, accuracy and measurement time are related through a
first-order function.
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Figure 12-4. Digits vs Measurement Time for 1 VDC Signal with 0.5 Single Tone

Windowing to Improve DC Measurements
The worst ENOD for a DC signal plus a sine tone occurs when the
measurement time is at half-periods of the sine tone. You can greatly
reduce these errors due to non-integer number of cycles by using a
weighting function before integrating to measure the desired DC value.
The most common weighting or window function is the Hann window,
commonly known as the Hanning window.

Figure 12-5 shows a dramatic increase in accuracy from the use of the Hann
window. The accuracy as a function of the number of sine tone periods is
improved from a first-order function to a third-order function. In other
words, you can achieve 1 additional digit of accuracy for every 101/3 = 2.15
times more measurement time using the Hann window instead of 1 digit for
every 10 times more measurement time without using a window. As in the
non-windowing case, the DC level is 1.0 V and the single tone peak
amplitude is 0.5 V.
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Figure 12-5. Digits vs Measurement Time for DC+Tone Using Hann Window

You can use other types of window functions to further reduce the
necessary measurement time or greatly increase the resulting accuracy.
Figure 12-6 shows that the Low Sidelobe (LSL) window can achieve more
than six ENOD of worst accuracy when averaging your DC signal over only
five periods of the sine tone (same test signal).

Figure 12-6. Digits vs Measurement Time for DC+Tone Using LSL Window
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RMS Measurements Using Windows
Like DC measurements, the worst ENOD for measuring the RMS level of
signals sometimes can be significantly improved by applying a window
to the signal before RMS integration. For example, if you measure the
RMS level of the DC signal plus a single sine tone, the most accurate
measurements are made when the measurement time is an integer number
of periods of the sine tone. Figure 12-7 shows that the worst ENOD varies
with measurement time (in periods of the sine tone) for various window
functions. Here, the test signal contains 0.707 VDC with 1.0 V peak sine
tone.

Figure 12-7. Digits vs Measurement Time for RMS Measurements

Applying the window to the signal increases RMS measurement accuracy
significantly, but the improvement is not as large as in DC measurements.
For this example, the LSL window achieves six digits of accuracy when the
measurement time reaches eight periods of the sine tone.

Using Windows with Care
Window functions can be very useful to improve the speed of your
measurement, but you must be careful. The Hann window is a general
window recommended in most cases. Use more advanced windows like the
LSL window only if you know enough about your signal that you are sure
the window is not doing more damage than good. For example, you can
significantly reduce RMS measurement accuracy if the signal you want to
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measure is composed of many frequency components close to each other in
the frequency domain.

You also must make sure that the window is scaled correctly or that you
update scaling after applying the window. The most useful window
functions are pre-scaled by their coherent gain—the mean value of the
window function—so that the resulting mean value of the scaled window
function is always 1.00. DC measurements do not need to be scaled when
using a properly scaled window function. For RMS measurements, each
window has a specific equivalent noise bandwidth that you must use to
scale integrated RMS measurements. You must scale RMS measurements
using windows by the reciprocal of the square root of the equivalent noise
bandwidth.

Rules for Improving DC and RMS Measurements
Use the following guidelines when determining a strategy for improving
your DC and RMS measurements:

• If your signal is overlapped with a single tone, longer integration times
increase the accuracy of your measurement. If you know the exact
frequency of the sine tone, use a measurement time that corresponds to
an exact number of sine periods. If you do not know the frequency of
the sine tone, apply a window, such as a Hann window, to significantly
reduce the measurement time needed to achieve a specific accuracy.

• If your signal is overlapped with many independent tones, increasing
measurement time increases the accuracy of the measurement. As in
the single tone case, using a window significantly reduces the
measurement time needed to achieve a specific accuracy.

• If your signal is overlapped with noise, do not use a window. In this
case, you can increase the accuracy of your measurement by increasing
the integration time or by pre-processing or conditioning your noisy
signal with a lowpass (or bandstop) filter.

RMS Levels of Specific Tones
You can always improve the accuracy of an RMS measurement by
choosing a specific measurement time (to contain an integer number of
cycles of your sine tones) or by using a window function. The measurement
of the RMS value is based only on the time domain knowledge of your
signal. You can use advanced techniques when you are interested in a
specific frequency or narrow frequency range.
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You can use bandpass or bandstop filtering before RMS computations to
measure the RMS power in a specific band of frequencies. You also can use
the Fast Fourier Transform (FFT) to pick out specific frequencies for RMS
processing. Refer to Chapter 13, Frequency Analysis, for more information
about the FFT.

The RMS level of a specific sine tone that is part of a complex or noisy
signal can be extracted very accurately using frequency domain processing,
leveraging the power of the FFT, and utilizing the benefits of windowing.
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13
Frequency Analysis

Frequency analysis is a general-purpose tool used for a wide variety of
applications dealing with dynamic signals, including electrical and
mechanical engineering, sound and vibration measurements, production
testing, and biomedical applications.

Frequency vs. Time Domain
Fourier’s theorem states that any waveform in the time domain can be
represented by the weighted sum of sines and cosines. The same waveform
can then be represented in the frequency domain as a pair of amplitude and
phase values at each component frequency.

You can generate any waveform by adding up sine waves, each with a
particular amplitude and phase. Figure 13-1 shows the original waveform,
labeled sum, and its component frequencies. The fundamental frequency is
shown at the frequency f0, the second harmonic at frequency 2f0, and the
third harmonic at frequency 3f0.

Figure 13-1. Signal Formed by Adding Three Frequency Components
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In the frequency domain, you can conceptually separate the sine waves that
add to form the complex time-domain signal. Figure 13-1 shows single
frequency components, which spread out in the time domain, as distinct
impulses in the frequency domain. The amplitude of each frequency line is
the amplitude of that frequency component’s time waveform.

Some measurements, such as harmonic distortion, are very difficult to
quantify by inspecting the time waveform on an oscilloscope. When the
same signal is displayed in the frequency domain by an FFT Analyzer, also
known as a Dynamic Signal Analyzer, you easily can measure the harmonic
frequencies and amplitudes.

Aliasing
According to Shannon’s sampling theorem, the highest frequency (Nyquist
frequency: fN) that can be analyzed is fN = fs/2, where fs is the sampling
frequency. Any analog frequency greater than fN after sampling appears as
a frequency between 0 and fN. Such a frequency is known as an alias
frequency. In the digital (sampled) domain, there is no way to distinguish
these alias frequencies from the frequencies that actually lie between 0 and
fN. Therefore these alias frequencies need to be removed from the analog
signal before sampling by the A/D converter.

In order to remove these components present at frequencies higher than the
Nyquist frequency, you must use an analog lowpass filter. The anti-aliasing
analog lowpass filter should exhibit a flat passband frequency response
with a good high-frequency alias rejection and a fast roll-off in the
transition band.

FFT Fundamentals
The Fast Fourier Transform (FFT) is a fast version of the Discrete Fourier
Transform (DFT). The DFT transforms digital time domain signals into the
digital frequency domain.

Figure 13-2. FFT Transforms Time-Domain Signals into the Frequency Domain

Time
Domain

Signal

Frequency
Domain
Signal

FFT
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Each frequency component is the result of a dot product of the time domain
signal with the complex exponential at that frequency and is given by the
equation:

The DC component is the dot product of x(n) with [cos(0) – jsin(0)], or
with 1.0.

The first bin, or frequency component, is the dot product of x(n) with
cos(2πn/N) – jsin(2πn/N). Here, cos(2πn/N) is a single cycle of the cosine
wave, and sin(2πn/N) is a single cycle of a sine wave.

In general, bin k is the dot product of x(n) with k cycles of the cosine wave
for the real part of X(k) and the sine wave for the imaginary part of X(k).

The use of the FFT for frequency analysis implies two important
relationships.

The first relationship links the highest frequency that can be analyzed to the
sampling frequency and is given by the equation:

where Fmax is the highest frequency that can be analyzed, and fs is the
sampling frequency.

Refer to the Aliasing section in this chapter for more information about
Fmax.

The second relationship links the frequency resolution to the total
acquisition time, which is related to the sampling frequency and the block
size of the FFT and is given by the equation:
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where ∆f is the frequency resolution, T is the acquisition time, fs is the
sampling frequency, and N is the block size of the FFT.

Fast FFT Sizes
Direct implementation of the DFT on N data samples requires
approximately N2 complex operations and, therefore, is a time-consuming
process. However, when the size of the sequence is a power of 2,

N = 2m for m = 1, 2, 3,…

a fast algorithm can compute the DFT with approximately N log2(N)
operations. This makes the calculation of the DFT much faster. This
algorithm can compute the FFT in place, so it is highly memory efficient.
Examples of sequence sizes where you can use this algorithm are 512,
1024, and 2048.

In addition, another optimized algorithm is used for short DFTs of lengths
2, 3, 4, 5, 8, and 10. As a result, when the size of the sequence is not a power
of 2, but can be factored as

N = 2m3k5j for m, k, j = 0, 1, 2, 3,…,

the DFT can be computed with speeds comparable to the radix-2 FFT, but
requires more memory. It can be used for sequence sizes such as 640, 480,
1000, and 2000.

When the sequence size cannot be factored into sizes that are in the set of
short DFTs, a Chirp-Z implementation of the DFT is used. This is much
faster than the direct evaluation of the DFT expression. This algorithm uses
more memory than the prime-factor algorithms, because it must allocate
additional buffers for storing intermediate results during processing.

Magnitude and Phase
The FFT spectrum output produces complex numbers. In other words,
every frequency component has a magnitude and phase. The phase is
relative to the start of the time record or relative to a single-cycle cosine
wave starting at the beginning of the time record. Single-channel phase
measurements are stable only if the input signal is triggered. Dual-channel
phase measurements compute phase differences between channels so that
if the channels are simultaneously sampled, triggering usually is not
necessary.
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Normally the magnitude of the spectrum is displayed. The magnitude is the
square root of the sum of the squares of the real and imaginary parts.

The phase is the arctangent of the ratio of the imaginary and real parts, and
is usually between πand –π radians (between 180 and –180 degrees).

Windowing
In practical applications, you obtain only a finite number of samples of the
signal. The FFT assumes that this time record repeats. If you have an
integral number of cycles in your time record, the repetition is smooth at
the boundaries. However, in practical applications, you usually have a
nonintegral number of cycles. In such cases the repetition results in
discontinuities at the boundaries, as shown in Figure 13-3. These artificial
discontinuities were not originally present in your signal and result in a
smearing or leakage of energy from your actual frequency to all other
frequencies. This phenomenon is known as spectral leakage. The amount
of leakage depends on the amplitude of the discontinuity, a larger one
causing more leakage.

A signal that is exactly periodic in the time record is composed of sine
waves with exact integral cycles within the time record. Such a perfectly
periodic signal has a spectrum with energy contained in exact frequency
bins.

A signal that is not periodic in the time record has a spectrum with energy
split or spread across multiple frequency bins. The FFT spectrum models
the time domain as if the time record repeated itself forever. It assumes that
the analyzed record is just one period of an infinitely-repeating periodic
signal.

Because the amount of leakage is dependent on the amplitude of the
discontinuity at the boundaries, you can use windowing to reduce the size
of the discontinuity and hence reduce spectral leakage. Windowing consists
of multiplying the time-domain signal by another time-domain waveform,
known as a window, whose amplitude tapers gradually and smoothly
towards zero at edges. The result is a windowed signal with very small or
no discontinuities, and therefore reduced spectral leakage. There are many
different types of windows. The one you choose depends on your
application.
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Figure 13-3. Periodic Waveform Created from Sampled Period

Some common window functions are uniform (no window or rectangular),
Hanning, Hamming, Flat Top, Blackman-Harris, Force, and Exponential.
Choosing the correct window requires some prior knowledge of the signal
that you are analyzing. Table 13-1 shows different types of signals and the
window choices that you can use with them.

Table 13-1. Signals and Window Choices

Type of Signal Window

Transients whose duration is shorter than the length
of the window

Rectangular

Transients whose duration is longer than the length
of the window

Exponential, Hanning

General-purpose applications Hanning

System analysis (frequency response
measurements)

Hanning (for random excitation),
Rectangular (for pseudo-random excitation)

Separation of two tones with frequencies very close
to each other, but with widely differing amplitudes

Kaiser-Bessel

Separation of two tones with frequencies very close
to each other, but with almost equal amplitudes

Rectangular

Accurate single tone amplitude measurements Flat Top

time

One period discontinuity
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Averaging to Improve the Measurement
Averaging successive measurements usually improves measurement
accuracy. Averaging is usually performed on measurement results or on
individual spectra, but not directly on the time record.

Common averaging modes include the following:

• RMS averaging

• Vector averaging

• Peak hold

RMS averaging reduces signal fluctuations but not the noise floor. The
noise floor is not reduced because RMS averaging averages the energy, or
power, of the signal. RMS averaging also causes averaged RMS quantities
of single-channel measurements to have zero phase. RMS averaging for
dual-channel measurements preserves important phase information.

Vector averaging eliminates noise from synchronous signals. Vector
averaging computes the average of complex quantities directly. The real
part is averaged separately from the imaginary part. This can reduce the
noise floor for random signals, because they are not phase-coherent from
one time record to the next. The real and imaginary parts are averaged
separately, reducing noise but usually requiring a trigger.

Peak hold averaging retains the peak levels of the averaged quantities. Peak
hold is performed at each frequency line separately, retaining peak levels
from one FFT record to the next.

Equations for Averaging
Averaged measurements are computed according to the following
equations.

RMS Averaging

FFT Spectrum

power spectrum

cross spectrum

frequency response (H1)

X∗ X•〈 〉

X∗ X•〈 〉

X∗ Y•〈 〉
X∗ Y•〈 〉
X∗ X•〈 〉

---------------------
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where X is the complex FFT of signal x (stimulus),

Y is the complex FFT of signal y (response),

X* is the complex conjugate of X,

Y* is the complex conjugate of Y, and

is the average of X, real and imaginary parts being averaged
separately.

Vector Averaging

where X is the complex FFT of signal x (stimulus),

Y is the complex FFT of signal y (response),

X* is the complex conjugate of X, and

is the average of X, real and imaginary parts being averaged
separately.

Peak Hold

where X is the complex FFT of signal x (stimulus), and

X* is the complex conjugate of X.

(H2)

FFT Spectrum

power spectrum

cross spectrum

frequency response (H1 = H2 = H3)

FFT spectrum

power spectrum

Y∗ Y•
Y∗ X•
---------------〈 〉

H3
H1 H2+( )

2
--------------------------=

X〈 〉

X〈 〉

X∗〈 〉 X〈 〉•

X∗〈 〉 Y〈 〉•
Y〈 〉
X〈 〉

---------

X〈 〉

MAX X∗ X•( )

MAX X∗ X•( )
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When performing RMS or vector averaging, each new spectral record can
be weighted using either linear or exponential weighting.

Linear weighting combines N spectral records with equal weighting. When
the number of averages has been completed, the analyzer stops averaging
and presents the averaged results.

Exponential weighting emphasizes new spectral data more than old and is
a continuous process.

Weighting is applied according to the following equation:

where Xi is the result of the analysis performed on the ith block, and

Yi is the result of the averaging process from X1 to Xi,

N = i for linear weighting, and

N is a constant for exponential weighting (N = 1 for i = 1).

Single-Channel Measurements—FFT, Power Spectrum
The FFT of a real signal returns a complex output, having a real and an
imaginary part. The power in each frequency component represented by the
FFT is obtained by squaring the magnitude of that frequency component.
Because of this, the power spectrum is always real and all the phase
information is lost. If you want phase information, you must use the FFT,
which gives you a complex output.

You can use the power spectrum in applications where phase information is
not necessary, for example, to calculate the harmonic power in a signal. You
can apply a sinusoidal input to a nonlinear system and see the power in the
harmonics at the system output.

Yi
N 1–

N
-------------Yi 1–

1
N
----Xi+=
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Dual-Channel Measurements—Frequency Response
When analyzing two simultaneously sampled channels, you usually want
to know the differences between the two channels rather than the properties
of each.

In a typical dual-channel analyzer, as shown in Figure 13-4, the
instantaneous spectrum is computed using a window function and the FFT
for each channel. The averaged FFT spectrum, auto power spectrum, and
cross power spectrum are computed and used in estimating the frequency
response function. You also can use the coherence function to check the
validity of the frequency response function.

Figure 13-4. Dual-Channel Frequency Analysis

The frequency response of a system is described by the magnitude, |H|, and
phase, ∠ H, at each frequency. The gain of the system is the same as its
magnitude and is the ratio of the output magnitude to the input magnitude
at each frequency. The phase of the system is the difference of the output
phase and input phase at each frequency.

Frequency
Response
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Time FFT

Time FFT
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14
Distortion Measurements

This chapter defines harmonic distortion, THD, and SINAD, and explains
when to use distortion measurements.

What Is Distortion?
When a pure single-frequency sine wave is applied to a perfectly linear
system, it produces an output that has the same frequency as that of the
input sine wave, but with possible changes in the amplitude and/or phase.
This also is true when a composite signal consisting of several sine waves
is applied at the input. The output signal consists of the same frequencies
but with different amplitudes and/or phases.

Many real-world systems act as nonlinear systems when their input limits
are exceeded, resulting in distorted output signals. If the input limits of a
system are exceeded, the output consists of one or more frequencies that did
not originally exist at the input. For example, if the input to a nonlinear
system consists of two frequencies f1 and f2, the frequencies at the output
could be f1 and harmonics (integer multiples) of f1, f2 and harmonics of f2,
and sums and differences of f1, f2, and the harmonics of f1 and f2. The
number of new frequencies at the output, their corresponding amplitudes,
and their relationships with respect to the original frequencies vary
depending on the transfer function. Use distortion measurements to
quantify the degree of nonlinearity of a system. Some common distortion
measurements include Total Harmonic Distortion (THD), Total Harmonic
Distortion + Noise (THD + N), Signal Noise and Distortion (SINAD), and
Intermodulation Distortion.

Application Areas
You can make distortion measurements for many devices, such as A/D
and D/A converters, audio processing devices, such as preamplifiers,
equalizers, and power amplifiers, analog tape recorders, cellular phones,
radios, TVs, stereos, and loudspeakers.

Measurements of harmonics often provide a good indication of the cause of
the nonlinearity. For example, nonlinearities that are not symmetrical
around zero produce mainly even harmonics, whereas symmetrical
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nonlinearities result in the production of mainly odd harmonics. You can
use distortion measurements to diagnose faults such as bad solder joints,
torn speaker cones, and components that have been incorrectly installed.
Nonlinearities are not always undesirable, however. For example, many
musical sounds are produced specifically by driving a device into its
nonlinear region.

Harmonic Distortion
When a signal, x(t), of a particular frequency (for example, f1) is passed
through a nonlinear system, the output of the system consists of not only
the input frequency (f1), but also its harmonics (f2 = 2f1, f3 = 3f1, f4 = 4f1, and
so on). The number of harmonics, and their corresponding amplitudes, that
are generated depends on the degree of nonlinearity of the system. In
general, the more the nonlinearity, the higher the harmonics, and vice
versa.

An example of a nonlinear system is a system where the output y(t) is the
cube of the input signal x(t), as shown in Figure 14-1.

Figure 14-1. Example Nonlinear System

So, if the input is

the output is

Therefore, the output contains not only the input fundamental frequency of
ω, but also the third harmonic of 3ω.

Total Harmonic Distortion
To determine the amount of nonlinear distortion that a system introduces,
you need to measure the amplitudes of the harmonics that were introduced
by the system relative to the amplitude of the fundamental. Harmonic
distortion is a relative measure of the amplitudes of the harmonics as
compared to the amplitude of the fundamental. If the amplitude of the

x t( ) ωt( )cos=

x3 t( ) 0.5 ωt( )cos 0.25 ωt( )cos 3ωt( )cos+[ ]+=
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fundamental is A1 and the amplitudes of the harmonics are A2 (second
harmonic), A3 (third harmonic), A4 (fourth harmonic), and so on, then the
total harmonic distortion (THD) is given by

The percentage total harmonic distortion (%THD) is given by the equation:

Thus, measurement of the total harmonic distortion requires measuring the
amplitudes of the fundamental frequency and the amplitudes of the
individual harmonics. A common cause of harmonic distortion is clipping
that occurs when a system is driven beyond its capabilities. Symmetrical
clipping results in odd harmonics, but asymmetrical clipping creates both
even and odd harmonics.

Real-world signals are usually noisy. The system also can introduce
additional noise into the signal. A useful measure of distortion, which also
takes into account the amount of noise power, is total harmonic
distortion + noise (THD + N) and is given by the equation:

where N is the noise power.

The percentage total harmonic distortion + noise (%THD + N) is given by
the equation:

Thus, measurement of THD + N requires measuring the amplitude of the
fundamental frequency and the power present in the remaining signal after
the fundamental frequency has been removed.

THD
A2

2 A3
2 A4

2 …+ + +

A1
------------------------------------------------------=

percentageTHD 100
A2

2 A3
2 A4

2 …+ + +

A1
------------------------------------------------------⋅=
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A2

2 A3
2 … N2+ + +

A1
2 A2
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THD + N also includes the noise, a low measurement not only means that
the system has a low amount of harmonic distortion, it also means that the
contribution from the AC mains hum, wideband white noise, and other
interfering signals is low. Measurements of THD or THD + N are usually
specified in terms of the highest order harmonic that has been present in
the measurement, for example, THD through the seventh harmonic or
THD + N through the third harmonic.

SINAD
Another measurement that takes into account both harmonics and noise is
SINAD. SINAD is given by the equation:

SINAD is the reciprocal of THD + N. You can use SINAD to characterize
the performance of FM receivers in terms of sensitivity, adjacent channel
selectivity, and alternate channel selectivity.

SINAD
Fundamental Noise Distortion+ +

Noise Distortion+
------------------------------------------------------------------------------------------=
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15
Limit Testing

You can use limit testing to monitor a waveform and determine if it always
satisfies a set of conditions, usually upper and lower limits. The region
bounded by the specified limits is a mask. The result of a limit or mask test
is generally a pass or fail.

Setting Up an Automated Test System
You can use the same method to create and control many different
automated test systems. Complete the following basic steps to set up an
automated test system for limit mask testing.

1. Configure the measurement by specifying arbitrary upper and lower
limits. This defines your mask or region of interest.

2. Acquire data using a DAQ device.

3. Monitor the data to make sure it always falls within the specified mask.

4. Log the Pass/Fail results from step 3 to a file or visually inspect the
input data and the points that fall outside the mask.

Repeat steps 2 through 4 to continue limit mask testing.

The following sections examine steps 1 and 3 in further detail. Assume that
the signal to be monitored starts at x = x0 and all the data points are evenly
spaced. The spacing between each point is denoted by dx.

Specifying a Limit
Limits are classified into two types: continuous limits and segmented
limits, as shown in Figure 15-1. The top graph in Figure 15-1 shows a
continuous limit. A continuous limit is specified using a set of x and y
points {{x1,x2, x3, …}, {y1, y2, y3, …}}. Completing step 1 creates a limit
with the first point at x0 and all other points at an uniform spacing of dx
(x0 + dx, x0 + 2dx, …). This is done through a linear interpolation of the x
and y values that define the limit. In Figure 15-1, black dots represent the
points at which the limit is defined and the solid line represents the limit
you create. Creating the limit in step 1 reduces test times in step 3. If the
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spacing between the samples changes, you can repeat step 1. Notice that the
limit is undefined in the region x0 < x < x1 and for x > x4.

Figure 15-1. Continuous vs. Segmented Limit Specification

The bottom graph of Figure 15-1 shows a segmented limit. The first
segment is defined using a set of x and y points {{x1, x2}, {y1, y2}}. The
second segment is defined using a set of points {x3, x4, x5} and {y3, y4, y5}.
You can define any number of such segments. As with continuous limits,
step 1 uses linear interpolation to create a limit with the first point at x0 and
all other points with an uniform spacing of dx. Notice that the limit is
undefined in the region x0 < x < x1 and in the region x > x5. Also notice the
limit is undefined in the region x2 < x < x3.
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Specifying a Limit Using a Formula
You can specify limits using formulas. Such limits are best classified as
segmented limits. Each segment is defined by start and end frequencies and
a formula. For example, the ANSI T1-413 recommendation specifies the
limits for the transmit and receive spectrum of an ADSL signal in terms of
formula. Table 15-1, which only includes a part of the specification, shows
the start and end frequencies and the upper limits of the spectrum for each
segment.

The limit is specified as an array of a set of x and y points, [{0.3,
4.0}{–97.5, –97.5}, {4.0, 25.9}{–92.5 + 21.5log2(f/4000), {–92.5 +
21.5log2(f/4000)}, …, {307.0, 1221.0}{–90, –90}]. Each element of the
array corresponds to a segment.

Figure 15-2 shows the segmented limit specified using formula as shown in
Table 15-1. The x axis is on a logarithmic scale.

Figure 15-2. Segmented Limit Specified Using Formula

Table 15-1. ADSL Signal Recommendations

Start KHz End KHz
Maximum (Upper Limit)

Value (dBm/Hz)

0.3 4.0 –97.5

4.0 25.9 –92.5 + 21.5log2(f/4000)

25.9 138.0 –34.5

138.0 307.0 –34.5 – 48.0log2(f/138000)

307.0 1221.0 –90
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Limit Testing
After you define your mask, you acquire a signal using a DAQ device. The
sample rate is set at 1/dx S/s. Compare the signal with the limit. In step 1,
you create a limit value at each point where the signal is defined. In step 3,
you compare the signal with the limit. For the upper limit, if the data point
is less than or equal to the limit point, the test passes. If the data point is
greater than the limit point, the test fails. For the lower limit, if the data
point is greater than or equal to the limit point, the test passes. If the data
point is smaller than the limit point, the test fails.

Figure 15-3 shows the result of limit testing in a continuous mask case.
Here, the test signal falls within the mask at all the points it is sampled,
other than points b and c. Thus the limit test fails. We do not test point d
because it falls outside the mask.

Figure 15-3. Result of Limit Testing with a Continuous Mask
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Figure 15-4 shows the result of limit testing in a segmented mask case.
Here, all the points fall within the mask. Points b and c are not tested
because the mask is undefined at those points. Thus the limit test passes.
Point d is not tested because it falls outside the mask.

Figure 15-4. Result of Limit Testing with a Segmented Mask

Applications
You can use limit mask testing in a wide range of test and measurement
applications. For example, you can use limit mask testing to determine that
the power spectral density of ADSL signals meets the recommendations
laid out in the ANSI T1-413 specification. Refer to the Specifying a Limit
Using a Formula section in this chapter for more information about ADSL
signal limits.

The following sections provide examples of when you can use limit mask
testing. In all these examples, the specifications are recommended by
standards-generating bodies, such as the CCITT, ITU-T, ANSI and IEC, to
ensure that all the test and measurement systems conform to a universally
accepted standard. In some other cases, the limit testing specifications are
proprietary and are strictly enforced by companies for quality control.
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Modem Manufacturing Example
Limit testing is used in modem manufacturing to make sure the transmit
spectrum of the line signal meets the V.34 modem specification as shown
in Figure 15-5.

Figure 15-5. Upper and Lower Limit for V.34 Modem Transmitted Spectrum

The ITU-T V.34 Recommendation contains specifications for a modem
operating at data signaling rates up to 33600 bits/s. It specifies that the
spectrum for the line signal that transmits data conforms to the template
shown in Figure 15-5. For example, for a normalized frequency of 1.0, the
spectrum must always lie between 3 and 1 dB. All the modems must meet
this specification. A modem manufacturer can set up an automated test
system to monitor the transmit spectrum for the signals that the modem
outputs. If the spectrum conforms to the specification, the modem passes
the test and is ready for customer use. Recommendations such as the ITU-T
V.34 are essential to ensure interoperability between modems from
different manufacturers and to provide high-quality service to customers.
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Digital Filter Design Example
You also can use limit mask testing in the area of digital filter design. You
may want to design lowpass filters with a passband ripple of 10 dB and
stopband attenuation of 60 dB. You can use limit testing to make sure the
frequency response of the filter always meets these specifications. The first
step in this process is to specify the limits. You can specify a lower limit of
–10 dB in the passband region and an upper limit of –60 dB in the stopband
region, as shown in Figure 15-6. After you specify these limits, you can run
the actual test repeatedly to make sure that all the frequency responses of
all the filters are designed meet these specifications.

Figure 15-6. Limit Test of a Lowpass Filter Frequency Response
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Pulse Mask Testing Example
The ITU-T G.703 recommendation specifies the pulse mask for signals
with bit rates, n × 64, where n is between 2 and 31. Figure 15-7 shows the
pulse mask for interface at 1544 kbits/s. Signals with this bit rate are also
referred to as T1 signals. T1 signals must lie in the mask specified by the
upper and lower limit. These limits are set to properly enable the
interconnection of digital network components to form a digital path or
connection.

Figure 15-7. Pulse Mask Testing on T1/E1 Signals
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16
Digital Filtering

This chapter introduces the concept of filtering, compares analog and
digital filters, discusses Finite Infinite Response (FIR) and Infinite Impulse
Response (IIR) filters, and helps you determine how to choose the most
appropriate digital filter.

What Is Filtering?
Filtering is the process by which the frequency content of a signal is altered.
The implicit assumption is that the signal content of interest is separable
from the raw signal. Classical linear filtering assumes that the signal
content of interest is distinct from the remainder of the signal in the
frequency domain (Fourier Transform). Filtering is one of the most
commonly used signal processing techniques. For example, consider the
bass and treble controls on your stereo system. The bass control alters the
low-frequency content of a signal, and the treble control alters the
high-frequency content. By varying these controls, you are filtering the
audio signal. Removing noise and performing decimation (lowpass
filtering the signal and reducing the sample rate) are other filtering
applications.

Advantages of Digital Filtering over Analog Filtering
An analog filter has an analog signal at both its input and its output. Both
the input, x(t), and output, y(t), are functions of a continuous variable t and
can have an infinite number of values. Analog filter design is about
50 years older than digital filter design. This type of filter design is often
reserved for specialists because it requires advanced mathematical
knowledge and understanding of the processes involved in the system
affecting the filter. Modern sampling and digital signal processing tools
have made it possible to replace analog filters with digital filters in
applications that require flexibility and programmability, such as audio,
telecommunications, geophysics, and medical monitoring.
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Some advantages of digital filters over analog filters include the following:

• Digital filters are software-programmable and therefore are easy to
build and test.

• Digital filters require only the arithmetic operations of multiplication
and addition/subtraction and therefore are easier to implement.

• Digital filters do not drift with temperature or humidity or require
precision components.

• Digital filters have a superior performance-to-cost ratio.

• Digital filters do not suffer from manufacturing variations or aging.

Common Digital Filters
Digital filters can be classified in many ways. The traditional approach is
to first classify a filter based on the values upon which it operates. The
simplest filters are those that operate on input values only. These filters are
called Moving Average (MA) filters or Finite Impulse Response (FIR)
filters. These filters perform a convolution of the filter coefficients with a
sequence of input values, producing an equally numbered sequence of
output values. The term FIR is used because if a single impulse is present
at the input of the filter and all subsequent inputs are zero, then the output
of the filter becomes zero after some finite time, equal to the number of
filter coefficients.

If a filter operates on current and previous input values and current and
previous output values, then the filter is termed Infinite Impulse Response
(IIR) or Auto Regressive Moving Average (ARMA). The impulse response
of such a filter is infinite in the sense that the response of the filter to an
impulse never goes to zero.

Each type of filter has advantages and disadvantages. Filter design, as with
all other engineering practices, involves tradeoffs. FIR filters are simple,
and can be designed to provide a linear phase response or constant group
delay. IIR filters can achieve the same level of attenuation as FIR filters
with far fewer coefficients. This means that the IIR filter can be
significantly faster and more efficient.
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Ideal Filters
Filters alter or remove unwanted frequencies. Depending on the frequency
range that they either pass or attenuate (reject), they can be classified into
the following types:

• A lowpass filter passes low frequencies but attenuates high
frequencies.

• A highpass filter passes high frequencies but attenuates low
frequencies.

• A bandpass filter passes a certain band of frequencies.

• A bandstop filter attenuates a certain band of frequencies.

The ideal frequency response of these filters is shown in Figure 16-1.

Figure 16-1. Ideal Frequency Response

The lowpass filter passes all frequencies below fc, whereas the highpass
filter passes all frequencies above fc. The bandpass filter passes all
frequencies between fc1 and fc2, whereas the bandstop filter attenuates all
frequencies between fc1 and fc2. The frequency points fc, fc1 and fc2 are
known as the cut-off frequencies of the filter. When designing filters, you
need to specify these cut-off frequencies.
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The frequency range that is passed through the filter is known as the
passband (PB) of the filter. An ideal filter has a gain of one (0 dB) in the
passband so that the amplitude of the signal neither increases nor decreases.
The stopband (SB) corresponds to that range of frequencies that do not pass
through the filter at all and are attenuated. The passband and the stopband
for the different types of filters are shown in Figure 16-2.

Figure 16-2. Passband and Stopband

Note that while the lowpass and highpass filters have one passband and one
stopband, the bandpass filter has one passband and two stopbands, and the
bandstop filter has two passbands and one stopband.

Practical (Nonideal) Filters
Ideally, a filter should have a unit gain (0 dB) in the passband, and a gain
of zero (–infinity dB) in the stopband. However, in a real implementation,
not all of these criteria can be fulfilled. In practice, there is always a finite
transition region between the passband and the stopband. In this region,
the gain of the filter changes gradually from one (0 dB) in the passband to
zero (–infinity dB) in the stopband.
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The Transition Band
The following diagrams show the passband, the stopband, and the
transition region (TR) for the different types of nonideal filters. Note that
the passband is now the region where the frequency range within which the
gain of the filter varies from 0 dB to –3 dB.

Figure 16-3. Nonideal Filters

Passband Ripple and Stopband Attenuation
In many applications, you can allow the gain in the passband to vary
slightly from unity. This variation in the passband is called the passband
ripple and is the difference between the actual gain and the desired gain of
unity. The stopband attenuation, in practice, cannot be infinite, and you
must specify a value with which you are satisfied. Both the passband ripple
and the stopband attenuation are measured in decibels (dB), defined by the
equation:

where log denotes the base 10 logarithm, and Ai(f) and Ao(f) are the
amplitudes at a particular frequency f before and after the filtering,
respectively.
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For example, for –0.02 dB passband ripple, the formula gives:

which shows that the ratio of input and output amplitudes is close to unity.

You can view practical filter design as approximating the ideal desired
magnitude response subject to certain constraints. The ideal passband and
stopband are flat and constant. Practical filter passbands and stopbands may
have ripples. Ideal filters have no transition region. Practical filters have
transition regions. Practical filter design allows tradeoffs between these
different components (passband ripple, stopband ripple, stopband
attenuation, transition region width) subject to the filter structure (FIR or
IIR) and the design algorithm.

FIR Filters
FIR filters have several different design methods. FIR filters have ripple in
the magnitude response, so the design problem can be restated as how you
can design a filter that has a magnitude response as close to the ideal as
possible and distributes the ripple in a desired fashion. For example, a
lowpass filter has an ideal characteristic magnitude response. A particular
application may allow some ripple in the passband and more ripple in the
stopband. The filter design algorithm should balance the relative ripple
requirements while producing the sharpest transition region.

The simplest approach is the Windowed FIR design. The Windowed FIR
design takes the inverse FFT of the desired magnitude response and applies
a time domain window to the result. The advantages of this method are
conceptual simplicity and ease of implementation. The disadvantages are
the inefficiency and difficulty in specification. For a given number of taps,
the Windowed FIR design does not distribute ripple equally and has a wider
transition band than other designs. It also is difficult to specify a cut-off
frequency that has a particular attenuation. To design a Windowed FIR
filter, you must specify the ideal cut-off frequency, the sampling frequency,
the number of taps, and the window type.

The other main FIR design approach uses the Parks-McClellan algorithm,
also known as Remez Exchange. This is an iterative algorithm that
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produces filters with a magnitude response for which the weighted ripple is
evenly distributed over the passband and stopband and that have a sharp
transition region. The advantage of this approach is the optimal response of
the designed filter. The disadvantages are the complexity and length of time
required to design. Park-McClellan design time is much longer than the
Windowed approach. A specialization of the Parks-McClellan approach is
equiripple FIR design. The only difference between them is the equiripple
design weights the passband and stopband ripple equally. To design an FIR
filter using the equiripple approach, you must specify the cut-off frequency,
the number of taps, the filter type, and pass and stop frequencies. The
cut-off frequency for equiripple designs specifies the edge of the passband
and/or the stopband. Equiripple filters have a ripple in the passband that
causes the magnitude response in the passband to be greater than or equal
to 1. Similarly, the magnitude response in the stopband is always less than
or equal to the stopband attenuation. For example, if you specify a lowpass
filter, the passband cut-off frequency is the highest or largest frequency for
which the passband conditions hold true. Similarly, the stopband cut-off is
the lowest frequency for which the stopband conditions are met. Both
design approaches deliver FIR filters with a linear phase characteristic.

When you use conventional techniques to design FIR filters with especially
narrow bandwidths, the resulting filter lengths can be very long. FIR filters
with long filter lengths often require lengthy design and implementation
times and are more susceptible to numerical inaccuracy. In some cases,
conventional filter design techniques, such as the Parks-McClellan
algorithm, might fail the design altogether.

IIR Filters
IIR filters are filters that may or may not have ripple in the passband and/or
the stopband. Digital IIR filter design derives from the classical analog
designs. These designs are Butterworth, Chebyshev, inverse Chebyshev,
Elliptic, and Bessel.

Butterworth Filters
A smooth response at all frequencies and a monotonic decrease from the
specified cut-off frequencies characterize the frequency response of
Butterworth filters. Butterworth filters are maximally flat, the ideal
response of unity in the passband and zero in the stopband. The half power
frequency or the 3 dB down frequency corresponds to the specified cut-off
frequencies.
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Figure 16-4 shows the response of a lowpass Butterworth filter. The
advantage of Butterworth filters is a smooth, monotonically decreasing
frequency response. After you set the cut-off frequency, LabVIEW sets the
steepness of the transition proportional to the filter order. Higher order
Butterworth filters approach the ideal lowpass filter response.

Figure 16-4. Butterworth Filter Response

Chebyshev Filters
Butterworth filters do not always provide a good approximation of the
ideal filter response because of the slow rolloff between the passband
(the portion of interest in the spectrum) and the stopband (the unwanted
portion of the spectrum).

Chebyshev filters minimize peak error in the passband by accounting for
the maximum absolute value of the difference between the ideal filter and
the filter response you want (the maximum tolerable error in the passband).
The frequency response characteristics of Chebyshev filters have an
equiripple magnitude response in the passband, monotonically decreasing
magnitude response in the stopband, and a sharper rolloff than Butterworth
filters.

Figure 16-5 shows the response of a lowpass Chebyshev filter. Notice that
the equiripple response in the passband is constrained by the maximum
tolerable ripple error and that the sharp rolloff appears in the stopband. The
advantage of Chebyshev filters over Butterworth filters is that Chebyshev
filters have a sharper transition between the passband and the stopband with
a lower order filter. This produces smaller absolute errors and higher
execution speeds.
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Figure 16-5. Chebyshev Filter Response

Chebyshev II or Inverse Chebyshev Filters
Chebyshev II, also known as inverse Chebyshev or Type II Chebyshev
filters, are similar to Chebyshev filters, except that Chebyshev II filters
distribute the error over the stopband (as opposed to the passband), and
Chebyshev II filters are maximally flat in the passband (as opposed to the
stopband).

Chebyshev II filters minimize peak error in the stopband by accounting for
the maximum absolute value of the difference between the ideal filter and
the filter response you want. The frequency response characteristics of
Chebyshev II filters are equiripple magnitude response in the stopband,
monotonically decreasing magnitude response in the passband, and a
rolloff sharper than Butterworth filters.

Figure 16-6 plots the response of a lowpass Chebyshev II filter. Notice that
the equiripple response in the stopband is constrained by the maximum
tolerable error and that the smooth monotonic rolloff appears in the
stopband. The advantage of Chebyshev II filters over Butterworth filters is
that Chebyshev II filters give a sharper transition between the passband and
the stopband with a lower order filter. This difference corresponds to a
smaller absolute error and higher execution speed. One advantage of
Chebyshev II filters over regular Chebyshev filters is that Chebyshev II
filters distribute the error in the stopband instead of the passband.
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Figure 16-6. Chebyshev II Filter Response

Elliptic (or Cauer) Filters
Elliptic filters minimize the peak error by distributing it over the
passband and the stopband. Equiripples in the passband and the stopband
characterize the magnitude response of elliptic filters. Compared with the
same order Butterworth or Chebyshev filters, the elliptic design provides
the sharpest transition between the passband and the stopband. For this
reason, elliptic filters are widely used.

Figure 16-7 plots the response of a lowpass elliptic filter. Notice that the
ripple in both the passband and stopband is constrained by the same
maximum tolerable error (as specified by ripple amount in decibels). Also,
notice the sharp transition edge for even low-order elliptic filters.
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Figure 16-7. Elliptic Filter Response

Bessel Filters
You can use Bessel filters to reduce nonlinear phase distortion inherent in
all IIR filters. In higher order filters and those with a steeper rolloff, this
condition is more pronounced, especially in the transition regions of the
filters. Bessel filters have maximally flat response in both magnitude and
phase. Furthermore, the phase response in the passband of Bessel filters,
which is the region of interest, is nearly linear. Like Butterworth filters,
Bessel filters require high-order filters to minimize the error and, for this
reason, are not widely used. You can also obtain linear phase response
using FIR filter designs.

Figure 16-8 and Figure 16-9 plot the response of a lowpass Bessel filter.
Notice that the response is smooth at all frequencies, as well as
monotonically decreasing in both magnitude and phase. Also, notice
that the phase in the passband is nearly linear.
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Figure 16-8. Bessel Magnitude Filter Response

Figure 16-9. Bessel Phase Filter Response

Choosing and Designing a Digital Filter
Some of the factors affecting the choice of a suitable filter are whether you
require linear phase, whether you can tolerate ripples, and whether a
narrow transition band is required. Use Figure 16-10 as a guideline for
selecting the correct filter. Keep in mind that in practice, you may need to
experiment with several different options before finding the best one.
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Figure 16-10. Filter Flowchart

After you choose the type of filter, you must specify the design parameters.
The first filter design parameter to consider is sampling rate. The maximum
frequency component of the signal of interest usually determines the
sampling rate. A common rule of thumb is to choose a sampling rate that is
10 times the highest frequency component of the signal of interest. The
possible tradeoff occurs when the cutoff frequency of the filter must be very
close to either DC or the Nyquist frequency. At these points, a filter may
converge more slowly. The solution is to increase the sampling rate if the
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cutoff is too close to Nyquist, or reduce the sampling rate if the cutoff is too
close to DC. In practice, a particular sampling rate is chosen and adjusted
only if there are problems.
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17
Signal Generation

The generation of signals is an important part of any test or measurement
system. Common test signals include the sine wave, the square wave, the
triangle wave, the sawtooth wave, several types of noise waveforms, and
multitone signals consisting of a superposition of sine waves.

The most common signal for audio testing is the sine wave. A single sine
wave is often used to determine the amount of harmonic distortion
introduced by a system. Multiple sine waves are widely used to measure the
intermodulation distortion or to determine the frequency response. The
following table lists the signals used for some typical measurements.

Common Test Signals
These signals form the basis for many tests and are used to measure the
response of a system to a particular stimulus. Some of the common test
signals available in most signal generators are as shown in Figure 17-1 and
Figure 17-2.

Table 17-1. Typical Measurements and Signals

Measurement Signal

Total Harmonic Distortion Sine wave

Intermodulation Distortion Multitone (two sine waves)

Frequency Response Multitone (many sine waves,
Impulse, Chirp)

Interpolation Sinc

Rise Time, Fall Time,
Overshoot, Undershoot

Pulse

Jitter Square wave
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Figure 17-1. Common Test Signals

1 Sine Wave
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2 Square Wave
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Figure 17-2. Common Test Signals (continued)

It is useful to view these signals in terms of their frequency content. For
example, a sine wave has a single frequency component. A square wave
consists of the superposition of many sine waves at odd harmonics of the
fundamental frequency. The amplitude of each harmonic is inversely
proportional to its frequency. Similarly, the triangle and sawtooth waves
also have harmonic components that are multiples of the fundamental
frequency. An impulse contains all frequencies that can be represented for
a given sampling rate and number of samples. Chirp patterns have discrete
frequencies that lie within a certain range. These frequencies depend on the
sampling rate, the start and end frequencies, and the number of samples.

Multitone Generation
The common test signals, except for the sine wave, do not allow full control
over their spectral content. For example, the harmonic components of a
square wave are fixed in frequency, phase, and amplitude relative to the
fundamental. On the other hand, multitone signals can be generated with a
specific amplitude and phase for each individual frequency component.
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A multitone signal is the superposition of several sine waves or tones, each
with a distinct amplitude, phase, and frequency. A multitone signal is
typically created so that an integer number of cycles of each individual tone
are contained in the signal. If an FFT of the entire multitone signal is
computed, then each of the tones falls exactly onto a single frequency bin.
This means there is no spectral spread or leakage.

Multitone signals are a part of many test specifications and allow the fast
and efficient stimulus of a system across an arbitrary band of frequencies.
Multitone test signals are used to determine the frequency response of a
device, and with appropriate selection of frequencies, can also be used to
measure such quantities as intermodulation distortion.

Crest Factor
The relative phases of the constituent tones with respect to each other
determines the crest factor of a multitone signal with specified amplitude.
The crest factor is defined as the ratio of the peak magnitude to the RMS
value of the signal. For example, a sine wave has a crest factor of 1.414:1.

For the same maximum amplitude, a multitone signal with a large crest
factor contains less energy than one with a smaller crest factor. Another
way to express this is to say that a large crest factor means that the
amplitude of a given component sine tone is lower than the same sine tone
in a multitone signal with a smaller crest factor. A higher crest factor results
in individual sine tones with lower signal-to-noise ratios. Proper selection
of phases is therefore critical to generating a useful multitone signal.

To avoid clipping, the maximum value of the multitone signal should not
exceed the maximum capability of the hardware that generates the signal.
This places a limit on the maximum amplitude of the signal. You can
generate a multitone signal with a specific amplitude by different
combinations of the phase relationships and amplitudes of the constituent
sine tones. It is usually better to generate a signal choosing amplitudes and
phases that result in a lower crest factor.

Phase Generation
There are two general schemes for generating tone phases of multitone
signals. The first is to make the phase difference between
adjacent-frequency tones vary linearly from 0 to 360 degrees. This allows
the creation of multitone signals with very low crest factors, but the
multitone signals then have some potentially undesirable characteristics.
This sort of multitone signal is very sensitive to phase distortion. If, in the
course of generating the multitone signal, the hardware or signal path
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induces non-linear phase distortion, then the crest factor can vary
considerably. In addition, a multitone signal with this sort of phase
relationship may display some repetitive time domain characteristics that
are possibly undesirable. This is shown in the multitone signal in
Figure 17-3.

Figure 17-3. Multitone Signal with Linearly Varying Phase Difference
between Adjacent Tones

Observe that it resembles a chirp signal in that its frequency appears to
decrease from left to right. This is characteristic of multitone signals
generated by linearly varying the phase difference between adjacent
frequency tones. It is often desirable to have a signal that is more noise-like
than this.

Another way to generate the tone phases is to vary them randomly. As the
number of tones increases the multitone signal will have amplitudes that are
nearly Gaussian in distribution. Figure 17-4 illustrates a signal created
using this method.
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Figure 17-4. Multitone Signal with Random Phase Difference between Adjacent Tones

In addition to being more noise-like, this signal is also much less sensitive
to phase distortion. Multitone signals with this sort of phase relationship
generally achieve a crest factor between 10 and 11 dB.

Swept Sine versus Multitone
To characterize a system you often must measure the response of the
system at many different frequencies. There are several methods to do this,
including swept/stepped sine and multitone.

The swept sine is a process of continuously and smoothly changing the
frequency of a sine wave across a range of frequencies. The stepped sine
approach provides a single sine tone of fixed frequency as the stimulus for
a certain time and then increments the frequency by a discrete amount. This
process is continued until all the frequencies of interest have been reached.

A multitone signal composed of multiple sine tones has significant
advantages over the swept sine and stepped sine approaches. For a given
range of frequencies, the multitone approach can be much faster than the
equivalent swept sine measurement, due mainly to settling time issues. For
a stepped sine measurement, for each sine tone, you must wait for the
settling time of the system to be over before starting the measurement. The
settling time issue for a swept sine can be even more complex. If the system
has low frequency poles/zeroes, or high Q resonances then the system may
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take a relatively long time to settle. For a multitone signal, you must wait
only once for the settling time. A multitone signal containing one period
of the lowest frequency, actually one period of the highest frequency
resolution, is enough. Once the response to the multitone signal is acquired,
the processing can be very fast. A single FFT may be used to measure many
frequency points (amplitude and phase) simultaneously.

There are situations for which a swept sine approach is more appropriate
than the multitone. Each measured tone within a multitone signal is more
sensitive to noise because the energy of each tone is lower than that in a
single pure tone. Consider, for example, a single sine tone of amplitude
10 V peak and frequency 100 Hz. A multitone signal containing 10 tones,
including the 100 Hz tone, may have a maximum amplitude of 10 V, but the
100 Hz tone component will have an amplitude somewhat less than this.
This lower amplitude is due to the way that all the sine tones (with different
phases) sum. Assuming the same level of noise, the signal-to-noise ratio
(SNR) of the 100 Hz component is therefore better for the case of the
individual tone. It is possible to mitigate this reduced SNR by adjusting the
amplitudes of the tones, applying higher energy where needed and lower at
less critical frequencies.

When viewing the response of a system to a multitone stimulus, any energy
between FFT bins is due to noise or unit-under-test (UUT) induced
distortion. The frequency resolution of the FFT is limited by your
measurement time. If you only want to measure your system at 1.000 kHz
and 1.001 kHz, two independent sine tones is the way to go. The
measurement can be done in a few milliseconds while a multitone
measurement requires at least 1 second. This is because you must wait for
enough time so as to obtain the required number of samples to achieve a
frequency resolution of 1 Hz. Some applications, like finding the resonant
frequency of a crystal, combine a multitone measurement for coarse
measurement and a narrow-range sweep for fine measurement.

Noise Generation
Noise signals may be used to perform frequency response measurements,
or to simulate certain processes. Several types of noise are typically used,
namely Uniform White Noise, Gaussian White Noise, and Periodic
Random Noise.

The term white in the definition of noise refers to the frequency domain
characteristic of noise. Ideal white noise has equal power per unit
bandwidth, resulting in a flat power spectral density across the frequency
range of interest. Thus, the power in the frequency range from 100 Hz to
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110 Hz is the same as the power in the frequency range from 1000 Hz to
1010 Hz. In practical measurements, to achieve the flat power spectral
density would require an infinite number of samples. Thus, when making
measurements of white noise, the power spectra are usually averaged, with
more number of averages resulting in a flatter power spectrum.

The terms uniform and Gaussian refer to the probability density function
(PDF) of the amplitudes of the time domain samples of the noise. For
uniform white noise, the PDF of the amplitudes of the time domain samples
is uniform within the specified maximum and minimum levels. Another
way to state this is to say that all amplitude values between some limits are
equally likely or probable. Thermal noise produced in active components
tends to be uniform white in distribution. Figure 17-5 shows the
distribution of the samples of uniform white noise.

Figure 17-5. Uniform White Noise

For Gaussian white noise, the PDF of the amplitudes of the time domain
samples is Gaussian. If uniform white noise is passed through a linear
system, the resulting output will be Gaussian white noise. Figure 17-6
shows the distribution of the samples of Gaussian white noise.
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Figure 17-6. Gaussian White Noise

Periodic Random Noise (PRN) is a summation of sinusoidal signals with
the same amplitudes but with random phases. It consists of all sine waves
with frequencies that can be represented with an integral number of cycles
in the requested number of samples. Since PRN contains only
integral-cycle sinusoids, you do not need to window PRN before
performing spectral analysis because PRN is self-windowing and therefore
has no spectral leakage.

PRN does not have energy at all frequencies, as white noise does, but only
at discrete frequencies which correspond to harmonics of a fundamental
frequency which is equal to the sampling frequency divided by the number
of samples. However, the level of noise at each of the discrete frequencies
is the same.

PRN can be used to compute the frequency response of a linear system with
one time record instead of averaging the frequency response over several
time records, as you must for nonperiodic random noise sources.
Figure 17-7 shows the spectrum of periodic random noise and the averaged
spectra of white noise.
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Figure 17-7. Spectral Representation of Periodic Random Noise and
Averaged White Noise
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Part IV

Instrument Control in LabVIEW

This part explains how to control instruments in LabVIEW.

Part IV, Instrument Control in LabVIEW, contains the following chapters:

• Chapter 18, Using LabVIEW to Control Instruments, introduces
LabVIEW as a way to control instruments.

• Chapter 19, Instrument Drivers in LabVIEW, explains what instrument
drivers are, where to find them, and how to use them.

• Chapter 20, VISA in LabVIEW, explains the basic concepts of VISA in
LabVIEW.
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18
Using LabVIEW to
Control Instruments

This chapter explains how to communicate with instruments and introduces
instrument drivers and VISA.

How Do You Use LabVIEW to Control Instruments?
In the simplest sense, instrument control is accomplished by sending
commands and data between the instrument and the PC. With LabVIEW,
you can use an instrument driver for your instrument, or you can write your
own VIs using VISA.

An instrument driver is a set of software routines that control a
programmable instrument. Each routine corresponds to a programmatic
operation such as configuring, reading from, writing to, and triggering the
instrument. Instrument drivers simplify instrument control and reduce
test program development time by eliminating the need to learn the
programming protocol for each instrument. The LabVIEW Instrument
Library contains instrument drivers for a variety of programmable
instrumentation, including GPIB, VXI, and RS-232/422 instruments.
Because instrument driver VIs contain high-level functions with intuitive
front panels, end users can quickly test and verify the remote capabilities of
their instrument without the knowledge of device-specific syntax. The end
user can easily create instrument control applications and systems by
programmatically linking instrument driver VIs in the block diagram.

LabVIEW instrument drivers usually communicate with instruments using
Virtual Instrument Software Architecture (VISA) functions. VISA is the
underlying protocol used when talking to instruments. You can use VISA
for many different instrument types, such as GPIB, Serial, VXI, and PXI.
Once you learn how to communicate using VISA for one type of
instrument, you do not have to learn a different way to communicate when
you need to use another type of instrument. You do have to learn about the
specific command set for the two instruments, but the method by which you
send and receive the commands does not change.
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When you begin to develop an instrument control application with
LabVIEW, you have the option to use an instrument driver or to
communicate directly using VISA.

Where Should You Go Next for Instrument Control?
LabVIEW has more than 700 instrument drivers from more than
50 vendors. A list is available on the National Instruments Developer Zone,
zone.ni.com/idnet You should always check to see if there is an
instrument driver available for your instrument. If you have an instrument
not on the list, you can find a similar instrument on the list and easily
modify its driver. Refer to Chapter 19, Instrument Drivers in LabVIEW,
for more information about using instrument drivers.

If you cannot find an instrument driver for your instrument, refer to
Chapter 20, VISA in LabVIEW, for more information about VISA.
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19
Instrument Drivers in LabVIEW

This chapter describes what instrument drivers are, how to install and use
instrument drivers from the Instrument Driver Library.

Installing Instrument Drivers
This section describes where to locate and install LabVIEW instrument
drivers.

Where Can I Get Instrument Drivers?
Instrument drivers can be installed from an instrument driver CD or
downloaded from the National Instruments Web site. You can download
drivers using the Instrument Driver Network, available at
zone.ni.com/idnet

If an instrument driver for your particular instrument does not exist,
you can try the following:

• Use a driver for a similar instrument. Often similar instruments from
the same manufacturer have similar if not identical command sets.

• Create a simple instrument driver.

• Develop a complete, fully functional instrument driver. To develop a
National Instruments quality driver, you can download Application
Note 006, Developing a LabVIEW Instrument Driver, from our web
site. This application note will help you to develop a complete
instrument driver.

Where Should I Install My LabVIEW Instrument Driver?
Instrument drivers should be installed as a subdirectory of your
labview\instr.lib. For example, the HP34401A instrument driver,
included with LabVIEW, is installed in the labview\instr.lib\
hp34401a directory.

Within this directory you will find the menu files and VI libraries that make
up an instrument driver. The menu files allow you to view your instrument
driver VIs on the Functions palette. The VI libraries contain the instrument
driver VIs.
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Organization of Instrument Drivers
Figure 19-1 shows the organization of a typical instrument driver. This
model applies to numerous instrument drivers.

Figure 19-1. Instrument Driver Model

The Getting Started VIs are simple application VIs you can use without
modification. Run this VI to verify communication with your instrument.
Typically you only need to change the instrument address before running
the VI from the front panel. However, many also require you to specify the
VISA Resource name, for example, GPIB::2. Refer to Chapter 20, VISA in
LabVIEW, for more information about VISA Resource names.

The Getting Started VI generally consists of three sub-VIs: the
Initialize VI, the Application VI, and the Close VI.

The Application VIs are high-level examples of grouping together
low-level component functions to execute a typical programmatic
instrument operation. For example, the Application VIs might include
VIs to control the most commonly used instrument configurations and
measurements. These VIs serve as a code example to execute a common
operation such as configuring the instrument, triggering, and taking a
measurement.

Because the application VIs are standard VIs with icons and connector
panes, you can call them from any high-level application when you want a
single, measurement-oriented interface to the driver. For many users, the

Application Programs Getting Started VI

Support VIs VISA

Functional Body

Component VIs

Application VIs

Initialize Close

Configure
Action &
Status Data Utility

Instrument Driver Model
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application VIs are the only instrument driver VIs needed for instrument
control. The HP34401A Example VI, shown in Figure 19-2, demonstrates
an application VI front panel and block diagram.

Figure 19-2. HP34401A Example

The Initialize VI, the first instrument driver VI called, establishes
communication with the instrument. Additionally, it can perform any
necessary actions to place the instrument either in its default power on
state or in some other specific state. Generally, the Initialize VI only needs
to be called once at the beginning of your application program.
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The Configuration VIs are a collection of software routines that configure
the instrument to perform the desired operation. There may be numerous
Configuration VIs, depending on the particular instrument. After these VIs
are called, the instrument is ready to take measurements or stimulate a
system.

The action/status category contains two types of VIs. Action VIs initiate or
terminate test and measurement operations. These operations can include
arming the trigger system or generating a stimulus. These VIs are different
from the Configuration VIs because they do not change the instrument
settings, but only order the instrument to carry out an action based on its
current configuration. The Status VIs obtain the current status of the
instrument or the status of pending operations.

The Data VIs transfer data to or from the instrument. Examples include VIs
for reading a measured value or waveform from a measurement instrument
and VIs for downloading waveforms or digital patterns to a source
instrument.

The Utility VIs perform a variety of operations that are auxiliary to the most
often used instrument driver VIs. These VIs include the majority of the
instrument driver template VIs such as reset, self-test, revision, error query,
and error message, and might include other custom instrument driver VIs
that perform operations such as calibration or storage and recall of setups.

The Close VI terminates the software connection to the instrument and
frees up system resources. Generally, the Close VI only needs to be called
once at the end of your application program or when you finish
communication with your instrument. Make sure that for each successful
call to the Initialize VI you have a matching Close VI. Otherwise you
maintain unnecessary memory resources.

Note Application functions do not call Initialize and Close. To run an application
function, you first must run the Initialize VI. The Getting Started VI calls Initialize and
Close.

Kinds of Instrument Drivers
There are different kinds of instrument drivers. The difference is not as
much in how you use them as in how they are implemented. The three kinds
are usually called:

• LabVIEW instrument drivers

• VXIplug&play instrument drivers

• IVI drivers
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The order here represents the evolution of instrument driver standards over
the last several years, though all three kinds of drivers are viable and
available today.

LabVIEW drivers are so called because they are written entirely with
LabVIEW functions. The other two kinds are almost always written in C
and have VI “wrappers” around each C function call. LabVIEW instrument
drivers are easier to modify and debug than the other kinds of drivers, and
they are easily converted from one computer hardware platform to another.
However, many of these drivers are older and do not conform to any
standard interface. For example, the functions you find in a driver for one
brand of multimeter may be completely different from those found in a
driver for a different multimeter.

The LabVIEW instrument driver library contains instrument drivers for a
variety of programmable instruments that use GPIB, VXI or serial
interfaces. You can use a library driver for your instrument as is. However,
LabVIEW instrument drivers are distributed with their block diagram
source code, so you can customize them for your specific application if
need be.

The VXIplug&play consortium attempted to improve this situation by
standardizing on VISA as the communications interface, as well as other
details, such as where drivers would be installed. While the VXIplug&play
standards admit drivers written entirely in LabVIEW, almost all
VXIplug&play drivers are written in C and then converted for use in
LabVIEW. To modify such a driver, you have to use a C-based development
environment, such as LabWindows/CVI, and then convert the driver to
LabVIEW again. The drivers also must be recompiled if you want to use
them on another computer hardware platform. Refer to www.vxipnp.org
for more information about the VXIplug&play consortium.

While the VXIplug&play standards did bring some consistency to
instrument drivers, they did not address certain applications, such as
production testing. The IVI Foundation was formed to bring even more
standardization to instrument drivers. This time, instrument-specific
programming interfaces were explicitly defined for the C language. This
means that you can write a program that can work with any of several
different brands of oscilloscope without needing special code for each
model in your application. To change from one model to another just
requires a change to configuration. The IVI Foundation also addressed
other issues, such as simulation of missing instruments and performance.
Refer to www.ivifoundation.org for more information about the IVI
Foundation.
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Since IVI drivers are C-based, they have most of the same issues as
VXIplug&play drivers. However, they are the best solution if performance,
interchangeability, and simulation are paramount. Refer to
www.ni.com/ivi for more information about IVI. Refer Application
Note 140, Using IVI Drivers in LabVIEW, for more information about
using IVI in LabVIEW.

All three kinds of drivers can be found on zone.ni.com/idnet

Inputs and Outputs Common to Instrument Driver VIs
Now you can start using instrument driver VIs to build applications. Just as
all instrument drivers share a common set of functions, they also share
common inputs and outputs. This section covers these common parameters
and how to use them.

Resource Name/Instrument Descriptor
Before you can communicate with an instrument, you need to open a
communication link to the instrument with the Initialize Instrument Driver
VI. After you are finished communicating with the instrument, you can call
the Close Instrument Driver VI, and all references or resources for the
instrument are closed. If you do not explicitly call the Close Instrument
Driver VI, all references are closed when you close LabVIEW.

When you initialize an instrument, you need to know the Resource Name
or Instrument Descriptor.

• Resource—VISA Alias or IVI Logical Name

• Instrument Descriptor—The exact name and location of a resource
having a format:

Interface Type[board index]::Address::INSTR.

For example, GPIB0::2::INSTR is the instrument descriptor when
using the first GPIB board to communicate with an instrument at
device address 2.

Use Measurement & Automation Explorer to determine what resources and
instrument addresses are available. You can specify the VISA Alias for the
Resource Name/Instrument Descriptor in the instrument driver VIs. Refer
to the Assigning VISA Aliases and IVI Logical Names section in Chapter 3,
Installing and Configuring Your Measurement Hardware, for more
information about VISA Aliases.
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Error In/Error Out Clusters
Error handling with instrument driver VIs is similar to error handling with
other I/O VIs in LabVIEW. Each instrument driver VI contains Error In
and Error Out terminals for passing error clusters from one VI to another.
The error cluster contains a Boolean flag indicating whether an error has
occurred, a number for the error code, and a string containing the location
of the VI where the error occurred.

Each instrument driver VI is written so that when an error occurs previously
(passed to the Error In terminal), the VI does not run. The error
information is passed to the next VI through the Error Out terminal. You
can find the Simple Error Handler VI on the Functions»Time & Dialog
palette. This VI displays a dialog box if an error occurs and also looks up
the error code to determine possible reasons for the error. You can use this
VI at any time in your application to display any possible error conditions.

Verifying Communication with Your Instrument

Running the Getting Started VI Interactively
To verify communication with your instrument and test a typical
programmatic instrument operation, first open the Getting Started VI. Look
over each of the controls and set them appropriately. Generally, with the
exception of the address field, the defaults for most controls are sufficient
for your first run. You will need to set the address appropriately. On
Windows, you can refer to Measurement & Automation Explorer for help
if you do not know the address of your instrument. After running the VI,
check to see that reasonable data was returned and an error was not reported
in the error cluster. The most common reasons for the Getting Started VI to
fail include the following:

• NI-VISA is not installed. If you did not choose this as an option during
your LabVIEW installation, you must install it before running your
Getting Started VI.

• The instrument address was incorrect. The Getting Started VI requires
you to specify the correct address for your instrument. If you are not
certain of your instrument address, use Measurement & Automation
Explorer or the Find Resource function.

• The instrument driver does not support the exact model of instrument
you are using. Double-check that the instrument driver supports the
instrument model you are using.
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Once you have verified basic communication with your instrument
using the Getting Started VI, you probably want to customize instrument
control for your needs. If your application needs are similar to the Getting
Started VI, the simplest means of creating a customized VI is to save a
copy of the Getting Started VI by selecting File»Save As. You can change
the default values on the front panel by selecting Operate»Make Current
Values Default. Block diagram changes might include changing the
constants wired to the Application VI or other sub-VIs.

Verifying VISA Communication
If no VISA VIs appear to be working in LabVIEW, including instrument
drivers, the first step to take is the VISA Find Resource VI. This VI runs
without any other VISA VIs in the block diagram. If this VI produces
strange errors such as nonstandard VISA errors, the problem is most likely
that the wrong version of VISA is installed or that VISA is not installed
correctly. If VISA Find Resource runs correctly, LabVIEW is working
correctly with the VISA driver. The next step is to identify what sequence
of VIs is producing the error in the LabVIEW program.

If it is a simple sequence of events that is producing the error, a good next
step in debugging is to try the same sequence interactively with the VISAIC
utility. It is generally a good idea to do initial program development
interactively. If the interactive utility works successfully but the same
sequence in LabVIEW does not, it is an indication that LabVIEW might
have a problem interacting with the VISA driver. If the same sequence
exhibits the same problem interactively in VISAIC it is possible that a
problem exists with one of the drivers VISA is calling. You can use the
interactive utilities for these drivers, such as IBIC for NI-488.2, to try to
perform the equivalent operations. If the problems persist on this level, it is
an indication that there might be a problem with the lower-level driver or
its installation.
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20
VISA in LabVIEW

This chapter is an overview of VISA in LabVIEW. It explains the basic
concepts involved in programming instruments with VISA and gives
examples demonstrating simple VISA concepts.

What Is VISA?
VISA is a standard I/O Application Programming Interface (API)
for instrumentation programming. VISA can control VXI, GPIB, PXI, or
serial instruments, making the appropriate driver calls depending on the
type of instrument being used.

Types of Calls: Message-Based Communication versus
Register-Based Communication

GPIB, serial, and some VXI instruments use message-based
communication. Message-based instruments are programmed with
high-level ASCII character strings. The instrument has a local processor
that parses the command strings and sets the appropriate register bits to
perform the desired functions. Message-based instruments are easy to
program. To make things easier, SCPI standardizes the ASCII command
strings used to program any instrument. All SCPI instruments with the
defined function are programmed with the same commands. Instead of
learning different command messages for each type of instrument from
each manufacturer, you need to learn only one command set. The most
common message-based functions are VISA Read, VISA Write, VISA
Assert Trigger, VISA Clear, and VISA Read STB.

PXI and many VXI instruments use register-based communication.
Register-based instruments are programmed at a low level using binary
information that is directly written to the instrument control registers.
Speed is the advantage of this type of communication because the
instrument no longer needs to parse the command strings and convert the
information to register level programming. Register-based instruments
communicate literally at the level of direct hardware manipulation. The
most common register-based functions are VISA In, VISA Out, VISA
Move In, and VISA Move Out.
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Writing a Simple VISA Application
For most simple instrument applications, only two VISA functions are
needed: VISA Write and VISA Read.

The example shown in Figure 20-1 is very simple—just one VISA Write
call and one VISA Read call. The instrument is specified using the VISA
Resource Name Constant. The VISA Write function will check to see if a
reference is already established with the specified instrument. If there is not
an existing reference, a reference will automatically be opened. Then, the
string MEAS:DC? is sent to the instrument. When reading from the
instrument, you can simply wire the VISA Resource Name output from the
VISA Write function to the VISA Read function to specify the desired
instrument. You can then process and display the returned output from the
VISA Read function as necessary for your measurement. The VISA Read
is followed by the Simple Error Handler VI to process any errors that might
have occurred with the VISA functions.

Figure 20-1. VISA Example

Using VISA Properties
VISA resources have a variety of properties (attributes) with values that
can be read or set in a program. This section describes how to use VISA
properties.

Using the Property Node
Property nodes are used to read or set the values of VISA properties.
The property node is shown in Figure 20-2.

Figure 20-2. Property Node
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Note The property node is a generic node that you also can use to set ActiveX and
VI Server properties.

After placing the property node on the block diagram, wire a VISA Session
to the reference input terminal of the property node.

The property node contains a single property terminal when it is initially
placed on the block diagram. However, it can be resized to contain as many
terminals as necessary. The initial terminal on the VISA property node is a
read terminal. This means that the value of the property selected in that
terminal will be read. This is indicated by the small arrow pointing to the
right at the right edge of the terminal. Many terminals can be changed
individually from a read terminal to a write terminal by right-clicking the
property you wish to change.

Note Some properties are read only or write only. Their values cannot be set.

To select the property in each terminal of the property node, click on the
property node terminal. This provides a list of all the possible properties
that can be set in the program. The number of different properties shown
under the Select Item choice of the VISA Property Node can be limited by
changing the VISA Class of the property node.

To change the VISA class, right-click the VISA property node and select
VISA Class. Several different classes can be selected under this option
besides the default INSTR class which encompasses all possible VISA
properties. These classes limit the properties displayed to those related to
that selected class instead of all the VISA properties. Once a session is
connected to the Session input terminal of the property node, the VISA
Class is set to the class associated with that session.

Initially, the VISA properties will be somewhat unfamiliar. Refer to the
LabVIEW Help, available by selecting Help»Contents and Index, for
more information about the properties. Brief descriptions of individual
properties are also available in the simple help window. To get a brief
description of a specific property, select the property in one of the terminals
of a property node and then open the Context Help window. The Context
Help window is shown for the VXI LA property in Figure 20-3.
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Figure 20-3. VXI Logical Address Property

Note that the help window shows the specific variable type of the property
and gives a brief description of what the property does. In cases where it is
not clear what variable type to use for reading or writing a property,
remember that right-clicking a property node and selecting Create
Constant, Create Control, or Create Indicator from the shortcut menu
automatically selects the appropriate variable type.

There are two basic types of VISA properties: global properties and
local properties. Global properties are specific to a resource while local
properties are specific to a session. For example, the VXI LA property is a
global property. It applies to all of the sessions that are open to that
resource. A local property is a property that can be different for individual
sessions to a specific resource. An example of a local property is the
timeout value. Some of the common properties for each resource type are
shown in the following lists.

Serial
Serial Baud Rate—The baud rate for the serial port.

Serial Data Bits—The number of data bits used for serial transmissions.

Serial Parity—The parity used for serial transmissions.

Serial Stop Bits—The number of stop bits used for serial transmissions.

GPIB
GPIB Readdressing—Specifies if the device should be readdressed
before every write operation.

GPIB Unaddressing—Specifies if the device should be unaddressed after
read and write operations.
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VXI
Mainframe Logical Address—The lowest logical address of a device in
the same chassis with the resource.

Manufacturer Identification—The manufacturer ID number from the
device configuration registers.

Model Code—The model code of the device from the device configuration
registers.

Slot—The slot in the chassis that the device resides in.

VXI Logical Address—The logical address of the device.

VXI Memory Address Space—The VXI address space used by the
resource.

VXI Memory Address Base—The base address of the memory region
used by the resource.

VXI Memory Address Size—The size of memory region used by the
resource.

There are many other properties besides those listed here. There are also
properties that are not specific to a certain interface type. The timeout
property, which is the timeout used in message-based I/O operations, is an
example of such a property.

The LabVIEW Help, available by selecting Help»Contents and Index,
shows which type of interfaces the property applies to, whether the property
is local or global, its data type, and what the valid range of values are for
the property. It also shows related items and gives a detailed description of
the property.

Using VISA Events
An event is a means of VISA communication between a resource and its
applications. It is a way for the resource to notify the application that some
condition has occurred that requires action by the application. Examples of
different events are included in the following sections.
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Types of Events

Handling GPIB SRQ Events Example
Figure 20-4 shows a block diagram for how to handle GPIB Service
Request (SRQ) events with VISA.

Figure 20-4. SRQ Events Block Diagram

The VI enables service request events and then writes a command string to
the instrument. The instrument is expected to respond with an SRQ when
it has processed the string. The Wait on Event Async VI waits for up to
10 seconds for the SRQ event to occur. After the SRQ occurs, the
instrument status byte is read with the Read Status Byte VI. The status byte
must be read after GPIB SRQ events occur, or later SRQ events may not be
received properly. Finally the response is read from the instrument and
displayed. The Wait on Event Async is different from the regular Wait on
Event VI in that it continuously calls Wait on Event with a timeout of zero
to poll for the event. This frees up time for other parallel segments of the
program to run while waiting for the event.

Advanced VISA

Opening a VISA Session
As discussed previously, when you call VISA Read and/or VISA Write,
LabVIEW checks to see if a reference has been opened for the instrument
specified. If a reference is already open, the VISA call uses that reference.
If there is not an open reference, VISA automatically opens one. You can
choose to explicitly open references to your instruments using VISA Open.
The VISA Open function is shown in Figure 20-5.
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Figure 20-5. VISA Open Function

Closing a VISA Session
An open session to a VISA resource uses system resources within
the computer. To properly end a VISA program, all of the opened
VISA sessions should be closed. To do this, use the VISA Close VI, shown
in Figure 20-6.

Figure 20-6. VISA Close VI

The VISA session input to the VISA Close VI is the session to be closed.
This session originally comes from the output session terminal of the
VISA Open VI or any other VISA VI. If a session is not closed when a VI
is run, it remains open.

Note If a VI is aborted when you are debugging a VI, the VISA session is not closed
automatically. You can use the Open VISA Session Monitor VI, available in
vi.lib\Utility, to assist in closing such sessions.

Locking
VISA introduces locks for access control of resources. With VISA,
applications can simultaneously open multiple sessions to the same
resource and can access the resource through these different sessions
concurrently. In some cases, applications accessing a resource must restrict
other sessions from accessing that resource. For example, an application
may need to execute a write and a read operation as a single step so that
no other operations take place between the write and read operations.
The application can lock the resource before invoking the write operation
and unlock it after the read operation, to execute them as a single step.
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The VISA locking mechanism enforces arbitration of accesses to resources
on an individual basis. If a session locks a resource, operations invoked by
other sessions are serviced or returned with a locking error, depending on
the operation and the type of lock used.

Figure 20-7. VISA Lock Async VI

The VISA Lock Async VI, shown in Figure 20-7 and available on the
Functions»Instrument I/O»VISA»VISA Advanced palette, opens two
sessions to the same resource and performs a query on each of them. This
example uses a lock to guarantee that the write/read pairs happen in the
expected order and are not interleaved. The lock is released after the
write/read sequence is complete, thus allowing the other session's
execution path to continue. There is no guarantee as to which session will
receive the lock first. Locking is useful in cases where more than one
application may be accessing the same resource, or where multiple
modules may open multiple sessions to the same resource even within a
single application.
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Shared Locking
There might be cases where you want to lock access to a resource but
selectively share this access. Figure 20-8 shows the Lock VI in complex
help view.

Figure 20-8. VISA Lock Function Icon

Lock type defaults to exclusive, but you can set it to shared. You can then
wire a string to requested key to be the password needed for another
application to access the resource. However, the VI assigns one in access
key if you do not ask for one. You can then use this key to access a locked
resource.

String Manipulation Techniques
You have learned that most LabVIEW instrument driver problems can be
solved without modifying the instrument driver code. However, in a few
situations, code modification is necessary. This section describes some
fundamental methods of instrument communication and introduces you to
some commonly-used functions in LabVIEW instrument drivers.

How Instruments Communicate
Recall that the two main types of instrument communication are
message-based and register-based.

No standards exist for register-based instrument communication. Each
device operates independently, and the instrument manual is the best
resource for learning how to program it.

Building Strings
When communicating with a message-based instrument, you must format
and build the correct command strings, or the instrument will not perform
the appropriate operation or return a response.

Typically, a command string is a combination of text and numeric values.
Because the instruments require that the entire command string be text, you
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must find a way to convert the numeric values to text and append them onto
the rest of the command string. The Format Into String function can be used
to build the command strings that you need to send to your instrument. This
function allows you to take an initial string and append other strings or
numeric data types to it.

Removing Headers
This section describes how you read the information returned from a
message-based instrument. The instrument user manual describes what
header and trailer information to expect from each data transfer.

Most instruments return data with extra information attached as a header or
a trailer. The header usually contains information such as the number of
data points returned or the instrument settings. In some cases, some trailer
information containing units or other instrument settings is at the end of the
data string. You must first remove the header and trailer information before
you can display or analyze the returned data.

Consider the example shown above in which the string contains a 6-byte
header, the data points, and a 2-byte trailer. You can use the String Subset
function, available on the Functions»String palette to remove the header
as shown above. String Subset returns a substring of the string input
beginning at offset and containing length number of characters. Length and
offset must be scalar. The offset of 6 above removes the header of
CURVE<space>, and the length of the string subset is the total length of the
instrument response string minus the length of the header.

Note For strings, the offset value starts at zero, just as the index for arrays starts at zero.

Waveform Transfers
In addition to header and trailer information, instrument data can be
returned in various formats. The instrument user manual describes what
formats are available and how you can convert each one to usable data. The
formats discussed in this section include ASCII, 1-byte binary, and 2-byte
binary formats.

ASCII Waveforms
If data from an instrument is returned in ASCII format, you can view it as a
character string. However, if numeric manipulation of the data is necessary
or you need to graph the data, you must first convert the string data to
numeric data. As an example, consider a waveform composed of
1,024 points, each point having a value between 0 and 255. Using ASCII
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encoding, you would need a maximum of 4 bytes to represent each data
value (a maximum of 3 bytes for the value and 1 byte for the separator, such
as a comma). You would need a maximum of 4,096 bytes (4 bytes * 1,024)
plus any header and trailer bytes to represent the waveform as an ASCII
string.

Another example is shown above with the header information already 
removed —10.2, 18.3, 8.91, 1.0, 5.5. You can use the Extract
Numbers VI to convert that ASCII string to a numeric array. The Extract
Numbers VI is an example VI available in the Search Examples Help. It 
finds all numbers in the given ASCII string and puts them into a Single 
Precision Array of numbers. A non-numeric delimiter such as a comma, 
colon, line feed, etc. is assumed and all formats listed above are recognized. 
Any characters at the beginning of the ASCII string are ignored, so you do 
not need to strip off header information when you use the Extract Numbers
VI. The example above shows how you can extract the five values from the 
string and place them into an array of numbers. You can now plot those 
values or use them in data analysis algorithms.

1-Byte Binary Waveforms
Some instruments do not have the option of sending data in ASCII format,
or for performance reasons all waveform data is sent in binary format. No
standard binary format exists, so you need to find out exactly how the data
values are stored from the instrument user manual. One common binary
format is 1-byte binary. With this type of data encoding, each data value is
converted to an 8-bit binary value before being sent.

When you read 1-byte binary data from the bus, it is returned as a character
string. However, the characters do not appear to have any correspondence
to the expected data. The binary numbers are interpreted as ASCII
character values and the corresponding characters are displayed. Some
examples are shown in the table above. If a value of 65 is sent as one data
value, you would read the character A from the bus. Notice that for a value
of 13, there is no printable ASCII character; 13 corresponds to an invisible
carriage return character.

You can display these invisible characters in a string indicator in LabVIEW
if you view the ‘\’Codes Display. For example, the top string indicator
shown above displays the values in the default Normal Display and you
cannot see the third character. However, if you right-click that front panel
string indicator and choose ‘\’ Codes Display from the shortcut menu, you
will see the carriage return character as a \r, as shown above in the second
string indicator.
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By enabling the ‘\’ Codes Display on the LabVIEW string, you can now
see characters that may have been invisible before. However, you still must
convert the binary string to a numeric array to graph or do mathematical
operations with the data.

Suppose the instrument sends a binary string containing 1,024 1-byte
binary encoded values as shown above. That waveform would require only
1,024 bytes plus any header and trailer information. Using binary encoding,
you would need only 1 byte to represent the data value, assuming each
value was an unsigned 8-bit integer.

Converting the binary string shown above to a numeric array is a little more
complex than converting an ASCII string. You must first remove all header
and trailer information using the String Subset function as previously
described. Then you convert the remaining data string to an array of
integers using the String To Byte Array function, available on the
Functions»String»String/Array/Path Conversion palette.

Note Using binary data, it is better to extract the data using the data size rather than
searching for the first character of the trailer information, because it is possible that the
search character might also be contained as part of the binary values.

2-Byte Binary Waveforms
A third data format is 2-byte binary. When data is in 2-byte binary format,
it is binary encoded and sent as ASCII characters just like the 1-byte binary.
However, 16 bits of data (or two ASCII characters) represent each data
value. Although this format uses twice as much space as the 1-byte binary
data, it is still more efficiently packed than ASCII formatted data.

As an example, consider an oscilloscope that transfers waveform data in
binary notation. For this example, the waveform consists of 1,024 data
points where each value is a 2-byte signed integer. Therefore, the entire
waveform requires 2,048 bytes plus a 5-byte header and a 2-byte trailer.
Remove the 5-byte header and take the next 2,048 bytes. Then use the Type
Cast function, available on the Fuctions»Advanced»Data Manipulation
palette, to convert the waveform string to an array of 16-bit integers.

Byte Order
When data is transferred in 2-byte binary format, it is important to know
the order of the bytes you receive. The 2-byte combination qH has the
corresponding integer value of 29,000, but the opposite byte order of Hq
has the corresponding integer value of 18,545.



Chapter 20 VISA in LabVIEW

© National Instruments Corporation 20-13 LabVIEW Measurements Manual

If you receive the high byte first, you must reverse the order of the bytes
before converting them to an integer value. Consider the example shown
above. This 2-byte binary waveform data is the same size and contains the
same header and trailer information as shown on the previous slide, but the
data is sent with the high byte first. The diagram above shows that you still
strip off the header and use the Type Cast function to convert the binary
string to 16-bit integers. However, the Swap Bytes function, available on
the Functions»Advanced»Data Manipulation palette, is needed to swap
the high-order 8 bits and the low-order 8 bits for every element.



© National Instruments Corporation A-1 LabVIEW Measurements Manual

A
Types of Instruments

When you use a personal computer to automate your test system, you are
not limited to the type of instrument that you can control. You can mix and
match instruments from various categories, such as serial, GPIB, VXI, PXI,
and computer-based instruments along with instruments that are not
discussed, such as image acquisition, motion control, Ethernet, SCXI,
CAMAC, parallel port, CAN, FieldBus, and other devices.

The things to be aware of with PC control of instrumentation are:

• What type of connector (pinouts) is on the instrument

• What kind of cable is needed (null-modem, number of pins,
male/female)

• What electrical properties are involved (signal levels, grounding,
cable length restrictions)

• What communication protocols are used (ASCII commands, binary
commands, data format)

• What kind of software drivers are available

This appendix discusses the most common categories of instruments.
You can use VISA to program or control all of these types of instruments.

Serial Port Communication
Serial communication is a popular means of transmitting data between a
computer and a peripheral device such as a programmable instrument or
another computer. Serial communication uses a transmitter to send data,
one bit at a time, over a single communication line to a receiver. Use this
method when data transfer rates are low or you must transfer data over long
distances. Serial communication is popular because most computers have
one or more serial ports, so no extra hardware is needed other than a cable
to connect your instrument to the computer (or two computers to each
other).

You must specify four parameters for serial communication: the baud rate
of the transmission, the number of data bits encoding a character, the sense
of the optional parity bit, and the number of stop bits. Each transmitted
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character is packaged in a character frame that consists of a single start bit
followed by the data bits.

Baud rate is a measure of how fast data moves between instruments that use
serial communication.

A start bit signals the beginning of each character frame.

Data bits are transmitted “upside down and backwards.” That is, inverted
logic is used and the order of transmission is from least significant bit
(LSB) to most significant bit (MSB). To interpret the data bits in a character
frame, you must read from right to left, and read 1 for negative voltage and
0 for positive voltage.

An optional parity bit follows the data bits in the character frame. The
parity bit, if present, also follows inverted logic. This bit is included as a
simple means of error checking. You specify ahead of time whether the
parity of the transmission is to be even or odd. If the parity is chosen to be
odd, the transmitter then sets the parity bit in such a way as to make an odd
number of 1’s among the data bits and the parity bit.

The last part of a character frame consists of 1, 1.5, or 2 stop bits. These bits
are always represented by a negative voltage. If no further characters are
transmitted, the line stays in the negative (MARK) condition. The
transmission of the next character frame, if any, begins with a start bit of
positive (SPACE) voltage.

How Fast Can I Transmit Data over the Serial Port?
You can calculate the maximum transmission rate in characters per second
for a given communication setting by dividing the baud rate by the bits per
character frame.

Serial Hardware Overview
There are many different kinds (recommended standards) of serial port
communication. The most common are the following:

• RS-232 (ANSI/EIA-232) is used for many purposes, such as
connecting a mouse, printer, or modem, as well as industrial
instrumentation. Because of improvements in the line drivers and
cables, applications often increase the performance of RS-232 beyond
the distance and speed listed in the standard. RS-232 is limited to
point-to-point connections between PC serial ports and devices.
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• RS-422 (AIA RS-422A Standard) uses a differential electrical signal,
as opposed to the unbalanced (single ended) signals referenced to
ground with RS-232. Differential transmission, which uses two lines
each to transmit and receive signals, results in greater noise immunity
and longer transmission distances as compared to RS-232. The greater
noise immunity and transmission distance are big advantages in
industrial environments.

• RS-485 (EIA-485 Standard) is an improvement over RS-422 because
it allows you to connect multiple devices (up to 32) to a single port and
defines the electrical characteristics necessary to ensure adequate
signal voltages under maximum load. With this enhanced multidrop
capability, you can create networks of devices connected to a single
RS-485 serial port. The noise immunity and multidrop capability make
RS-485 the serial connection of choice in industrial applications
requiring many distributed devices networked to a PC or other
controller for data collection, HMI, and other operations.

Your System
If you have a serial device in your system, you first must obtain the pinout
for that device and make sure you have the correct cable to connect it to
your computer. Determine if the device is DCE or DTE and what settings
it uses to communicate—baud rate, data bits, stop bits, parity, or
handshaking (flow control).

GPIB Communications
GPIB instruments offer test and manufacturing engineers the widest
selection of vendors and instruments for general-purpose to specialized
vertical market test applications. GPIB instruments have traditionally been
used as stand-alone benchtop instruments where measurements are taken
by hand.

Controllers, Talkers, and Listeners
To determine which device has active control of the bus, devices are
categorized as Controllers, Talkers, or Listeners and each device has a
unique GPIB primary address between 0 and 30. The Controller defines the
communication links, responds to devices requesting service, sends GPIB
commands, and passes/receives control of the bus. Talkers are instructed by
the Controller to talk and place data on the GPIB. Only one device at a time
can be addressed to talk. Listeners are addressed by the Controller to listen
and read data from the GPIB. Several devices can be addressed to listen.
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Hardware Specifications
The GPIB is a digital, 24-conductor parallel bus. It consists of eight data
lines (DIO 1-8), five bus management lines (EOI, IFC, SRQ, ATN, REN),
three handshake lines (DAV, NRFD, NDAC), and eight ground lines. The
GPIB uses an eight-bit parallel, byte-serial, asynchronous data transfer
scheme. This means that whole bytes are sequentially handshaked across
the bus at a speed that the slowest participant in the transfer determines.
Because the unit of data on the GPIB is a byte (eight bits), the messages
transferred are frequently encoded as ASCII character strings.

Additional electrical specifications allow data to be transferred across the
GPIB at the maximum rate of 1 MB/sec because the GPIB is a transmission
line system. These specifications are:

• A maximum separation of 4 m between any two devices and an
average separation of 2 m over the entire bus.

• A maximum cable length of 20 m.

• A maximum of 15 devices connected to each bus with at least
two-thirds of the devices powered on.

If you exceed any of these limits, you can use additional hardware to extend
the bus cable lengths or expand the number of devices allowed.

Faster data rates can be obtained with HS488 devices and controllers.
HS488 is an extension to GPIB and is supported by most National
Instruments controllers.

VXI (VME eXtensions for Instrumentation)
VXI defines a standard communication protocol to certain devices.
Through this interface, you can use common ASCII commands to control
the instruments, just as with GPIB.

The VXIbus specification is an extension of the VMEbus (IEEE 1014)
specification. As an electromechanical superset of the VMEbus, the
VXIbus uses the same backplane connectors as VME, the same board sizes,
and the same signals defined in the VMEbus specification. The VXIbus
adds two board sizes, changes module width, and defines additional signals
on the backplane.
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VXI Hardware Components
A VXI system consists of a mainframe, a controller, instruments, and
cables. The VXI mainframe is the chassis, cage, or crate that contains the
power supply, cooling system, backplane connections, and physical
mounting for VXIbus modules. Mainframes come in four sizes (A, B, C,
and D) which correspond to the largest-size board you can plug into the
mainframe.

VXI Configurations
You can use VXI in a variety of ways. You can integrate VXI into a system
alongside other GPIB instruments, or you can build a system using only
VXI instruments. Each system configuration has the following unique
benefits:

• Embedded Controllers

– Highest performance, smallest size

– Direct access to VXIbus/fast interrupt response

• MXI, Multisystem eXtension Interface

– Embedded performance with desktop computers

– Use remote PCs to control VXI systems

– MITE/DMA—23 Mbytes/s block transfers

• GPIB-to-VXI Translators

– Control VXI mainframe with IEEE 488

The first configuration embeds a custom VXI computer directly inside the
mainframe. Using this configuration, you can take full advantage of the
high-performance capabilities of VXI because your computer can
communicate directly with the VXI backplane.

The second configuration combines the performance benefits of a custom
embedded computer with the flexibility of general-purpose desktop
computers. With this configuration, you use a high-speed MXIbus link to
connect an external computer directly to the VXI backplane.

The third configuration consists of one or more VXI mainframes linked to
an external computer through GPIB. You can use this configuration to
integrate VXI gradually into existing GPIB systems and to program VXI
instruments using existing GPIB software.
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PXI Modular Instrumentation
The new modular instrumentation system based on PCI eXtensions for
Instrumentation (PXI) delivers a PC-based, high-performance
measurement system.

PXI is completely compatible with CompactPCI and incorporates the
advanced timing and triggering features associated with VXI. PXI fills the
gap between low-cost desktop PC solutions and high-end VXI and GPIB
solutions by combining the industry standards of Windows, PCI,
CompactPCI, and VXI.

You design a PXI system by selecting everything, including the controller
(an embedded Pentium class or higher computer and peripherals), the
chassis, and the modules. PXI modules can be anything from
analog-to-digital, digital-to-analog, digital I/O, and multifunction
input/output boards to image acquisition, motion control, and instruments
like oscilloscopes, multimeters, serial data analyzers, and other custom
instruments.

Computer-Based Instruments
Computer-based instruments are made for several different platforms
including PCMCIA (laptops), PCI (desktop computers), and PXI.

Computer-based instruments are an example of virtual instruments that
consist of a PC-based instrument module, a computer, and application
software. Traditional instruments are stand-alone instruments, where the
functionality of the instrument is encapsulated within a “black box.”
Because digitizer and packaging technology continues to evolve, today we
have PC Card (PCMCIA) form factor instruments that give you the same
functionality as a standalone instrument.

The computer-based instrument can take advantage of the processing
power of the PC, expandable memory, high-resolution display options, and
enterprise-wide connectivity to the corporate or world-wide Internet. You
can measure voltage, current, and resistance using a computer-based
instrument or expand the capabilities of your virtual instrument through
application software. You can create a data logger and automatically
analyze your acquired data. You can also generate reports on the fly. While
you are making measurements, you can analyze and present information to
make real-world decisions.



Appendix A Types of Instruments

© National Instruments Corporation A-7 LabVIEW Measurements Manual

With application software, you can customize the capabilities of your
virtual instrument to solve multiple test challenges. You also can upgrade
the performance of your measurement system with evolving low-cost PC
technology that offers a more economical instrumentation solution than
purchasing an expensive, brand new, single-function stand-alone
instrument.
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B
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of www.ni.com

NI Developer Zone
The NI Developer Zone at zone.ni.com is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of www.ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of www.ni.com
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Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of www.ni.com. Branch office web sites
provide up-to-date contact information, support phone numbers, e-mail
addresses, and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.
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Glossary

A

A/D Analog-to-digital; analog/digital.

ADC Analog-to-digital converter. An electronic device, often an integrated
circuit, that converts an analog voltage to a digital number.

AI Analog input.

AI device Analog input device that has AI in its name, such as the NEC-AI-16E-4.

AIGND Analog input ground pin on a DAQ device.

Am9513-based
devices

These MIO devices do not have an E- in their names. These devices include
the NB-MIO-16, NB-MIO-16X, NB-TIO-10, and NB-DMA2800 on the
Macintosh; and the AT-MIO-16, AT-MIO-16F-5, AT-MIO-16X,
AT-MIO-16D, and AT-MIO-64F-5 in Windows.

amplification Type of signal conditioning that improves accuracy in the resulting
digitized signal and reduces noise.

AMUX devices See analog multiplexer.

analog multiplexer Devices that increase the number of measurement channels while still using
a single instrumentation amplifier. Also called AMUX devices.

analog trigger Trigger that occurs at a user-selected level and slope on an incoming analog
signal. You can set triggering to occur at a specified voltage on either an
increasing or a decreasing signal (positive or negative slope).

ANSI American National Standards Institute.

AO Analog output.

Application
Programming Interface
(API)

Programming interface for controlling some software packages, such as
Microsoft Visual SourceSafe.
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B

Bessel filters These filters have a maximally flat response in both magnitude and phase.
The phase response in the passband, which is usually the region of interest,
is nearly linear. Use Bessel filters to reduce nonlinear phase distortion
inherent in all IIR filters.

Bessel function The Bessel function of the first kind of order n is defined by

with n = 0, 1, ...

The Bessel function of the second kind of order n, is defined by

with n = 0, 1, ...

Bessel polynomial The Bessel polynomial of order n is defined by a recurrence relation

for n = 2, 3, ... where and

bipolar Signal range that includes positive and negative values, for example, –5V
to 5 V.

C

cascading Process of extending the counting range of a counter chip by connecting to
the next higher counter.

cast To change the type descriptor of a data element without altering the
memory image of the data.

channel clock Clock that controls the time interval between individual channel sampling
within a scan. Products with simultaneous sampling do not have this clock.
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Chebyshev polynomial The Chebyshev polynomial, for real numbers x, is given by
. This results in

and so on.

circular-buffered I/O Input/output operation that reads or writes more data points than can fit in
the buffer. When LabVIEW reaches the end of the buffer, LabVIEW
returns to the beginning of the buffer and continues to transfer data.

clock Hardware component that controls timing for reading from or writing to
groups.

code width Smallest detectable change in an input voltage of a DAQ device.

column-major order Way to organize the data in a 2D array by columns.

common-mode voltage Any voltage present at the instrumentation amplifier inputs with respect to
amplifier ground.

conditional retrieval Method of triggering in which you simulate an analog trigger using
software. Also called software triggering.

coupling Manner in which a signal connects from one location to another.

D

D/A Digital-to-analog.

DAC Digital-to-analog converter. An electronic device, often an integrated
circuit, that converts a digital number to a corresponding analog voltage or
current.

DAQ Solution Wizard Utility that guides you through specifying your DAQ application, and it
provides a custom DAQ solution.

DAQ-STC Data Acquisition System Timing Controller.

default input Default value of a front panel control.

default load area One of three parts of the SCXI EEPROM. The default load area is where
LabVIEW automatically looks to load calibration constants the first time
you access an SCXI module. When the module is shipped, this area
contains a copy of the factory calibration constants. The other EEPROM
areas are the factory area and the user area.

Tn x( ) n arc x( )cos( )cos=
T0 1 T1 x( ), x T2 x( ), 2x2 1– T3 x( ), 4x3 3x–= = = =
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default setting Default parameter value recorded in the driver. In many cases, the
default input of a control is a certain value (often 0) that means use the
current default setting. For example, the default input for a parameter
can be do not change current setting, and the default setting can be
no AMUX-64T boards. If you change the value of such a parameter,
the new value becomes the new setting. You can set default settings for
some parameters in the configuration utility.

device number Slot number or board ID number assigned to the device when you
configured it.

differential measurement
system

A way to configure your device to read signals in which you do not need to
connect either input to a fixed reference, such as a building ground.

digital trigger TTL signal that you can use to start or stop a buffered data acquisition
operation, such as buffered analog input or buffered analog output.

dimension Size and structure of an array.

DIP Dual Inline Package.

DMA Direct Memory Access. A method by which you can transfer data to
computer memory from a device or memory on the bus, (or from computer
memory to a device), while the processor does something else. DMA is the
fastest method of transferring data to or from computer memory.

down counter Performs frequency division on an internal signal.

E

EEPROM Electrically erased programmable read-only memory. Read-only memory
that you can erase with an electrical signal and reprogram.

EISA Extended Industry Standard Architecture.

F

factory area One of three parts of the SCXI EEPROM. The factory area contains
factory-set calibration constants. The area is read-only. The other
EEPROM areas are the default load area and the user area.
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FFT Fast Fourier transform.

floating signal
sources

Signal sources with voltage signals that are not connected to an absolute
reference or system ground. Some common examples of floating signal
sources are batteries, transformers, or thermocouples. Also called
nonreferenced signal sources.

G

gain Amplification or attenuation of a signal.

GATE input pin Counter input pin that controls when counting in your application occurs.

grounded signal
sources

Signal sources with voltage signals that are referenced to a system
ground, such as a building ground. Also called referenced signal sources.

H

handshaked
digital I/O

Type of digital acquisition/generation where a device or module accepts or
transfers data after it receives a digital pulse. Also called latched digital I/O.

hardware triggering Form of triggering where you set the start time of an acquisition and gather
data at a known position in time relative to a trigger signal.

Hz Hertz. Cycles per second.

I

immediate digital I/O Type of digital acquisition/generation where LabVIEW updates the digital
lines or port states immediately or returns the digital value of an input line.
Also called nonlatched digital I/O.

input limits Upper and lower voltage inputs for a channel. You must use a pair of
numbers to express the input limits. The VIs can infer the input limits from
the input range, input polarity, and input gain(s). Similarly, if you wire the
input limits, range, and polarity, the VIs can infer the onboard gains when
you do not use SCXI.
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input range Difference between the maximum and minimum voltages an analog input
channel can measure at a gain of 1. The input range is a scalar value, not a
pair of numbers. By itself, the input range does not uniquely determine the
upper and lower voltage limits. An input range of 10 V could mean an
upper limit of +10 V and a lower limit of 0 V or an upper limit of +5 V and
a lower limit of –5 V.

The combination of input range, polarity, and gain determines the input
limits of an analog input channel. For some products, jumpers set the input
range and polarity, although you can program them for other products.
Most products have programmable gains. When you use SCXI modules,
you also need their gains to determine the input limits.

interrupt Signal that indicates that the central processing unit should suspend its
current task to service a designated activity.

interval scanning Scanning method where there is a longer interval between scans than there
is between individual channels that comprises a scan.

isolation Type of signal conditioning in which you isolate the transducer signals
from the computer for safety purposes. This protects you and your
computer from large voltage spikes and makes sure the measurements from
the DAQ device are not affected by differences in ground potentials.

L

Lab/1200 device Devices, such as the Lab-PC-1200 and the DAQCard-1200, that use the
8253 type counter/timer chip.

latched digital I/O Type of digital acquisition/generation where a device or module accepts or
transfers data after it receives a digital pulse. Also called handshaked digital
I/O.

Legacy MIO device Devices, such as the AT-MIO-16, that typically are configured with
jumpers and switches and are not Plug and Play compatible. They also use
the 9513 type counter/timer chip.

limit settings Maximum and minimum voltages of the analog signals you are measuring
or generating.
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linearization Type of signal conditioning in which LabVIEW linearizes the voltage
levels from transducers so the voltages can be scaled to measure physical
phenomena.

LSB Least Significant Bit.

M

MB Megabytes of memory. 1 MB is equal to 1,024 KB.

multiplexed mode SCXI operating mode in which analog input channels are multiplexed into
one module output so that your cabled DAQ device can access the
module’s multiplexed output and the outputs on all other multiplexed
modules in the chassis through the SCXI bus. Also called serial mode.

multiplexer Set of semiconductor or electromechanical switches with a common output
that can select one of a number of input signals and that you commonly use
to increase the number of signals by one ADC measures.

N

nonlatched
digital I/O

Type of digital acquisition/generation where LabVIEW updates the digital
lines or port states immediately or returns the digital value of an input line.
Also called immediate digital I/O.

non-referenced
signal sources

Signal sources with voltage signals that are not connected to an absolute
reference or system ground. Some common example of non-referenced
signal sources are batteries, transformers, or thermocouples. Also called
floating signal sources.

Non-referenced
single-ended (NRSE)
measurement system

All measurements are made with respect to a common reference, but the
voltage at this reference can vary with respect to the measurement system
ground.

O

onboard channels Channels provided by the plug-in data acquisition board.

OUT output pin Counter output pin where the counter can generate various TTL pulse
waveforms.
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output limits Upper and lower voltage or current outputs for an analog output channel.
The output limits determine the polarity and voltage reference settings for
a board.

P

parallel mode Type of SCXI operating mode in which the module sends each of its input
channels directly to a separate analog input channel of the device to the
module.

pattern generation Type of handshaked (latched) digital I/O in which internal counters
generate the handshaked signal, which in turn initiates a digital transfer.
Because counters output digital pulses at a constant rate, you can generate
and retrieve patterns at a constant rate because the handshaked signal is
produced at a constant rate.

PCI Peripheral Component Interconnect. An industry-standard, high-speed
databus.

Plug and Play devices Devices that do not require DIP switches or jumpers to configure resources
on the devices. Also called switchless devices.

polling Method of sequentially observing each I/O point or user interface control
to determine if it is ready to receive data or request computer action.

postriggering Technique to use on a data acquisition board to acquire a programmed
number of samples after trigger conditions are met.

pretriggering Technique to use on a data acquisition board to keep a continuous buffer
filled with data so that when the trigger conditions are met, the sample
includes the data leading up to the trigger condition.

pulse trains Multiple pulses.

pulsed output Form of counter signal generation by which produces a pulse output when
a counter reaches a certain value.
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R

read mark Points to the scan at which a read operation begins. Analogous to a file
I/O pointer, the read mark moves every time you read data from an input
buffer. After the read is finished, the read mark points to the next unread
scan. Because multiple buffers are possible, you need both the buffer
number and the scan number to express the position of the read mark.

referenced signal
sources

Signal sources with voltage signals that are referenced to a system ground,
such as the Earth or a building ground. Also called grounded signal sources.

referenced single-ended
(RSE) measurement
system

All measurements are made with respect to a common reference or a
ground. Also called a grounded measurement system.

RMS Root Mean Square.

row-major order Way to organize the data in a 2D array by rows.

RSE Referenced Single-Ended.

RTD Resistance Temperature Detector. A temperature-sensing device whose
resistance increases with increases in temperature.

RTSI Real-Time System Integration bus. The National Instruments timing bus
that interconnects data acquisition devices directly by means of connectors
on top of the devices for precise synchronization of functions.

S

S Sample.

sampling period Time interval between observations in a periodic sampling control system.

scan One or more analog or digital input samples. Typically, the number of input
samples in a scan equals the number of channels in the input group. For
example, one pulse from the scan clock produces one scan that acquires one
new sample from every analog input channel in the group.
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scan clock Clock that controls the time interval between scans. On products with
interval scanning support (for example, the AT-MIO-16F-5), this clock
gates the channel clock on and off. On products with simultaneous
sampling (for example, the EISA-A2000), this clock times the
track-and-hold circuitry.

scan rate Number of times, (or scans), per second that LabVIEW acquires data from
channels. For example, at a scan rate of 10 Hz, LabVIEW samples each
channel in a group 10 times per second.

SCXI Signal Conditioning eXtensions for Instrumentation. The National
Instruments product line for conditional low-level signals within an
external chassis near sensors, so only high-level signals in a noisy
environment are sent to data acquisition boards.

sec Seconds.

sensor Device that produces a voltage or current output representative of a
physical property being measured, such as speed, temperature, or flow.

settling time Amount of time required for a voltage to reach its final value within
specified limits.

signal conditioning Manipulation of signals to prepare them for digitizing.

signal divider Performing frequency division on an external signal.

simple-buffered I/O Input/output operation that uses a single memory buffer big enough for all
your data. LabVIEW transfers data into or out of this buffer at the specified
rate, beginning at the start of the buffer and stopping at the end of the
buffer. Use simple buffered I/O when you acquire small amounts of data
relative to memory constraints.

software trigger Programmed event that triggers an event, such as data acquisition.

software triggering Method of triggering in which you simulate an analog trigger using
software. Also called conditional retrieval.

SOURCE input pin Counter input pin where the counter counts the signal transitions.

strain gauge Thin conductor, which is attached to a material, that detects stress or
vibrations in that material.
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T

task Timed I/O operation using a particular group. See task ID.

task ID Number LabVIEW generates to identify the task at hand for the NI-DAQ
drive the task at hand. The following table gives the function code
definitions.

Functions Code I/O Operation
1 analog input
2 analog output
3 digital port I/O
4 digital group I/O
5 counter/timer I/O

TC Terminal count. The highest value of a counter.

timed digital I/O Type of digital acquisition/generation where LabVIEW updates the digital
lines or port states at a fixed rate. The timing is controlled either by a clock
or by detection of a change in the pattern. Timed digital I/O is either finite
or continuous. Also called pattern generation or pattern digital I/O.

TIO-ASIC Timing I/O Application Specific Integrated Circuit. Found on 660x devices.

toggled output Form of counter signal generation by which the output changes the state of
the output signal from high to low or low to high when the counter reaches
a certain value.

transducer excitation Type of signal conditioning that uses external voltages and currents to
excite the circuitry of a signal conditioning system into measuring physical
phenomena.

trigger Any event that causes or starts some form of data capture.

TTL Transistor-Transistor Logic.

U

unipolar Signal range that is either always positive or negative but never both.
For example, 0 to 10 V, not –10 to 10 V.
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update One or more analog or digital output samples. Typically, the number of
output samples in an update equals to the number of channels in the output
group. For example, one pulse from the update clock produces one update
that sends one new sample to every analog output channel in the group.

update rate Number of output updates per second.

user area One of the three parts of the SCXI EEPROM. The user area is where you
store calibration constants that you calculate using the SCXI Cal Constants
VI. If you want LabVIEW to load your constants automatically, you can put
a copy of your constants in the default load area. The other EEPROM areas
are the factory area and the default load area.

UUT Unit under test.

V

V Volts.

Voltage reference.

VAC Volts, Alternating Current.

VDC Volts, Direct Current.

Virtual Instrument
Software Architecture

Single interface library for controlling GPIB, VXI, RS-232, and other types
of instruments.

VISA See Virtual Instrument Software Architecture.

Vref
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Index

Numbers
653X family of digital devices

digital data on multiple ports, 8-8
handshaking lines, 8-7
immediate digital I/O

Advanced Digital VIs, 8-5
Easy Digital VIs, 8-4

iterative-buffered, 8-12
nonbuffered handshaking, 8-11
overview, 8-2
simple-buffered handshaking, 8-12

1200 Calibrate VI, 9-35
8253/54 counter

continuous pulse train generation, 10-12
elapsed time counting, 10-34
event counting, 10-33
finite pulse train generation, 10-13
frequency and period measurement

high-frequency signals, 10-27
low-frequency signals, 10-29
period measurement, 10-24

frequency division, 10-37
maximum pulse width, period, or time

measurements (table), 10-22
overview, 10-4
pulse width determination, 10-19
single square pulse generation, 10-10
square pulse generation, 10-7
stopping counter operation, 10-16
uncertainty factor in mode 0, 10-15

8255 family of digital devices
digital data on multiple ports, 8-8
handshaking lines, 8-7
immediate digital I/O

Advanced Digital VIs, 8-5
Easy Digital VIs, 8-4

iterative-buffered, 8-13
nonbuffered handshaking, 8-11
overview, 8-3
simple-buffered handshaking, 8-12

A
AC voltage measurement example, 4-6
Acquire & Proc N Scans-Trig VI, 6-33, 6-36
Acquire & Process N Scans VI, 6-27
Acquire 1 Point from 1 Channel VI, 6-14
Acquire and Average VI, 9-20
Acquire N Multi-Digital Trig VI, 6-33
Acquire N Scans VI, 6-22, 6-24
Acquire N Scans Analog Hardware Trig VI,

6-35, 6-36
Acquire N Scans Analog Software Trig VI, 6-39
Acquire N Scans Digital Trig VI, 6-32
Acquire N Scans-ExtChanClk VI, 6-42, 6-44
Acquire N-Multi-Analog Hardware

Trig VI, 6-36
Acquire N-Multi-Start VI, 6-24
Action VIs, 19-4
ADC

device range, 6-4
resolution of bits, 6-4

adjacent counters (table), 10-31
Adjacent Counters VI, 10-26
Advanced Digital VIs, 8-5
Advanced VIs, 5-4
AI Acquire Waveform VI

acquiring single waveform, 6-21
averaging a scan example, 4-5
measuring AC voltage, 4-7
oscilloscope measurements (example), 4-14
using waveform control, 5-8
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AI Acquire Waveforms VI
acquiring multiple waveforms, 6-22
simple-buffered analog input with

graphing, 6-23
AI Clear VI

acquiring multiple waveforms, 6-23
hardware-timed analog I/O control

loops, 6-19
reading amplifier offset, 9-19
SCXI example, 9-22

AI Clock Config VI
enabling external conversions, 6-42
external control of scan clock, 6-44
SCXI settling time, 9-15
setting channel clock rate, 6-41

AI Config VI
acquiring multiple waveforms, 6-23
basic circular-buffered analog input, 6-29
disabling scan clock, 6-40
hardware-timed analog I/O control

loops, 6-19
multiple-channel, single-point analog

input, 6-16, 6-17
SCXI one-point calibration, 9-39

AI Control VI, 6-44
AI Hardware Config VI, 9-14
AI Read One Scan VI

Context Help window parameter
conventions, 5-5

software-timed analog I/O control
loops, 6-18

AI Read VI
acquiring multiple waveforms, 6-23
asynchronous continuous acquisition

using DAQ occurrences, 6-27
basic circular-buffered analog input, 6-29
conditional retrieval, 6-38
conditional retrieval cluster (figure), 6-38
SCXI example, 9-22
SCXI one-point calibration, 9-39

simple-buffered analog input with
multiple starts, 6-24

software triggered waveform acquisition
and generation, 7-9

AI Sample Channel VI
reading temperature sensor on terminal

block, 9-18
single-channel, single-point analog

input, 6-14
single-point acquisition example, 4-3
using waveform control, 5-8

AI Sample Channels VI, 6-15
AI Single Scan VI

hardware-timed analog I/O control
loops, 6-19

improving control loop performance,
6-20

multiple-channel, single-point analog
input, 6-16, 6-17

SCXI one-point calibration, 9-39
software-timed analog I/O control

loops, 6-17
AI Start VI

acquiring multiple waveforms, 6-23
basic circular-buffered analog input, 6-29
hardware triggered waveform acquisition

and generation, 7-9
hardware-timed analog I/O control

loops, 6-19
reading amplifier offset, 9-19
SCXI example, 9-22
SCXI one-point calibration, 9-39
simple-buffered analog input with

multiple starts, 6-24
software triggered waveform acquisition

and generation, 7-9
alias, definition of, 11-4
aliasing

anti-aliasing filters, 11-6
avoiding, 11-4
frequency analysis, 13-2
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Am9513 counter
adjacent counters (table), 10-31
cascading counters, 10-30
continuous pulse train generation, 10-11
counting operations when all counters are

used, 10-14
elapsed time counting, 10-33
event counting, 10-30
external connections to cascade counters

(figures), 10-31
frequency and period measurement

connecting counters, 10-25
high-frequency signals, 10-25
low-frequency signals, 10-28
period measurement, 10-23

frequency division, 10-36
maximum pulse width, period, or time

measurements (table), 10-22
overview, 10-4
pulse width measurement

controlling pulse width
measurement, 10-20

determining pulse width, 10-18
single square pulse generation, 10-8
square pulse generation, 10-7
stopping counter operation, 10-16

AMUX-64T channel addressing, 6-13
analog input

buffered waveform acquisition, 6-21
circular buffers for accessing

data, 6-25
circular-buffered analog input

examples, 6-28
simple-buffered analog input

examples, 6-23
simultaneous buffered- and

waveform generation, 6-30
waveform acquisition with

input VIs, 6-21
channel addressing with

AMUX-64T, 6-13

defining signals, 6-1
external control of acquisition rate, 6-39

channel clock control, 6-41
scan clock control, 6-43
simultaneous scan and channel clock

control, 6-44
floating signal sources, 6-3

analog input setting
considerations, 6-6

measurement system selection, 6-3
grounded signal sources, 6-2
single-point acquisition, 6-14

analog input control loops, 6-17
multiple-channel, 6-15
single-channel, 6-14

terminology, 6-13
triggered data acquisition, 6-30

analog triggering, 6-33
digital triggering, 6-31
hardware triggering, 6-31
software triggering, 6-36

Analog I/O Control Loop (hw timed) VI, 6-18
Analog I/O Control Loop (immed) VI, 6-18
analog I/O control loops, 6-17

hardware-timed, 6-18
improving control loop

performance, 6-20
software-timed, 6-17

analog output, 7-1
external control of update rate, 7-7

supplying external test clock from
DAQ device, 7-8

using external update clock, 7-7
simultaneous buffered waveform

acquisition and generation, 7-8
E series MIO boards, 7-8
Lab/1200 boards, 7-10

single-point generation
multiple-immediate updates, 7-3
overview, 7-1
single-immediate updates, 7-2
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waveform generation (buffered analog
output), 7-3

circular-buffered output, 7-5
overview, 7-1
using VIs, 7-3

analog to digital converter. See ADC.
analog triggering, 6-33

diagram of analog trigger (figure), 6-34
examples, 6-35
timeline for post-triggered data

acquisition (figure), 6-35
anti-aliasing filters, 11-6
AO Clear VI

buffered analog output, 7-5
circular-buffered output, 7-5

AO Config VI
buffered analog output, 7-4
circular-buffered output, 7-5
SCXI analog output example, 9-30

AO Continuous Gen VI, 7-5
AO Generate Waveform VI

buffered analog output, 7-4
using waveform control, 5-8

AO Generate Waveforms VI, 7-3
AO Group Config VI, 9-30
AO Hardware Config VI, 9-30
AO Single Update VI

calibrating SCXI modules for signal
generation, 9-41

SCXI analog output example, 9-30
AO Start VI

buffered analog output, 7-4
circular-buffered output, 7-5
software triggered waveform acquisition

and generation, 7-9
AO Trigger and Gate Config VI, 7-9
AO Update Channels VI, 7-2
AO Wait VI, 7-4
AO Waveform Gen VI, 7-4

AO Write VI
analog output buffer 2D array

(figure), 5-19
buffered analog output, 7-4
circular-buffered output, 7-5
software triggered waveform acquisition

and generation, 7-9
AO Write One Update VI

single-immediate updates, 7-2
software-timed analog I/O control

loops, 6-18
Application VIs, 19-2
arrays, 5-17

column major 2D arrays, 5-18
two-dimensional, 5-17

attribute component, in waveform control, 5-7
Auto Regressive Moving Average (ARMA)

filters, 16-2
averaging

DC voltage measurement example, 4-4
DC/RMS measurements, 12-3
frequency analysis, 13-7

peak hold averaging equation, 13-8
RMS averaging equation, 13-7
vector averaging equation, 13-8

B
bandpass filters, 16-3
bandstop filters, 16-3
Basic Averaged DC-RMS VI, 4-7
Bessel filters, 16-11
bipolar range, 5-15
bipolar signals, 6-7
Buff Handshake Input VI, 8-12
Buff Handshake Output VI, 8-12
buffered analog output. See waveform

generation (buffered analog output).
buffered handshaking, 8-11

circular-buffered, 8-13
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iterative-buffered, 8-12
simple-buffered, 8-12

Buffered Pattern Input VI, 8-14
Buffered Pattern Input-Trig VI, 8-15
Buffered Pattern Output VI, 8-14
Buffered Pattern Output-Trig VI, 8-15
buffered pulse and period measurement, 10-21
buffered waveform acquisition, 6-21

circular buffers for accessing data, 6-25
asynchronous continuous acquisition

using DAQ occurrences, 6-27
continuous acquisition from multiple

channels, 6-27
principles of, 6-25

circular-buffered analog input
examples, 6-28

available example applications, 6-29
basic analog input, 6-29

simple-buffered analog input
examples, 6-23

graphing of waveforms, 6-23
multiple starts, 6-24
writing to spreadsheet file, 6-25

simultaneous buffered- and waveform
generation, 6-30

waveform acquisition with input
VIs, 6-21

multiple waveform acquisition, 6-22
single waveform acquisition, 6-21

Build Array function, 5-18, 6-17
Burst Mode Input VI, 8-12
Burst Mode Output VI, 8-12
Butterworth filters, 16-7

C
calibration, SCXI, 9-35

default calibration constants, 9-37
EEPROM calibration constants, 9-35

default load area, 9-36
factory area, 9-36

user area, 9-36
one-point calibration, 9-39
recalibrating modules for signal

generation, 9-41
SCXI Cal Constants VI, 9-36, 9-39
SCXI Calibrate VI, 9-36
signal acquisition calibration

methods, 9-37
two-point calibration, 9-40

cascading counters, 10-30
Change Detection Input VI, 8-14
channel addressing, 5-11

AMUX-64T, 6-13
channel name addressing, 5-12
channel number addressing, 5-13
DAQ Channel Name Control, 5-12
SCXI, 9-12

channel clock
channel and scan intervals using channel

clock (figure), 6-40
controlling externally, 6-41

simultaneous control of scan and
channel clocks, 6-44

round-robin scanning using channel
clock, 6-40

TTL-level signal (figure), 6-42
channel configuration using DAQ Channel

Wizard, 3-3
channel names, immediate digital I/O, 8-4
Channel to Index VI, 6-38
Chebyshev filters, 16-8
Chebyshev II (inverse) filters, 16-9
circular-buffered analog input

asynchronous continuous acquisition
using DAQ occurrences, 6-27

continuous acquisition from multiple
channels, 6-27

examples, 6-28
available example applications, 6-29
basic analog input, 6-29

principles of, 6-25
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circular-buffered handshaking, 8-13
circular-buffered output (waveform

generation), 7-5
eliminating errors, 7-6
examples, 7-6
using VIs, 7-5

Close VI, 19-4
code width calculation, 6-6
column major 2D arrays, 5-18
column major order, 5-18
common mode voltage, 6-10
communication

DAQ devices and computers, 2-3
GPIB communications, A-3
message-based communication vs.

register-based communication, 20-1
serial port communication, A-1
special purpose instruments and

computers, 2-5
VXI, A-4

conditional retrieval. See software triggering.
configuration. See also installation.

assigning VISA Aliases and IVI Logical
Names, 3-4

DAQ channel configuration, 3-3
Measurement & Automation Explorer

(Windows), 3-3
NI-488.2 Configuration utility

(Macintosh), 3-3
NI-DAQ Configuration utility

(Macintosh), 3-3
relationship between LabVIEW, driver

software, and measurement hardware
(figure), 3-1

SCXI systems, 9-5
serial port configuration

Macintosh computers, 3-4
UNIX computers, 3-4

Configuration VIs, 19-4
Cont Acq & Chart (Async Occurrence) VI,

6-28

Cont Acq & Chart (buffered) VI
(example), 6-29

Cont Acq & Graph (buffered) VI
(example), 6-30

Cont Acq to File (binary) VI (example), 6-30
Cont Acq to File (scaled) VI (example), 6-30
Cont Acq to Spreadsheet File VI

(example), 6-30
Cont Acq&Chart (immediate) VI, 6-16
Cont Acq'd File (scaled) VI, 7-6
Cont Change Detection Input VI, 8-15
Cont Handshake Input VI, 8-13
Cont Handshake Output VI, 8-13
Cont Pattern Input VI, 8-15
Cont Pattern Output VI, 8-15
Cont Pulse Train (8253) VI, 10-12
Cont Pulse Train-Easy (9513) VI, 10-11
Context Help window parameter

conventions, 5-5
Continuous Generation VI, 7-5
continuous pattern I/O, 8-15
continuous pulse train generation, 10-11
Continuous Transducer VI, 9-20
control loops. See analog I/O control loops.
Controllers, GPIB, A-3
conventions used in manual, xxiii-xxiv
Convert RTD Reading VI, 9-26
Convert Strain Gauge Reading VI, 9-30
Convert Thermistor VI, 9-18
Convert Thermocouple Reading VI, 9-22
Count Edges (DAQ-STC) VI, 10-32
Count Edges (NI-TIO) VI, 10-32, 10-33
Count Events (8253) VI, 10-33
Count Events or Time VI, 10-33
Count Events-Easy (9513) VI, 10-32
Count Events-Int (9513) VI, 10-32
Count Time (8253) VI, 10-34
Count Time-Easy (9513) VI, 10-33
Count Time-Easy (DAQ-STC) VI, 10-33
Count Time-Int (9513) VI, 10-34



Index

© National Instruments Corporation I-7 LabVIEW Measurements Manual

Counter Read VI
controlling pulse width measurement,

10-20
elapsed time counting, 10-34
event counting, 10-32
frequency and period measurement

high-frequency signals, 10-26
low-frequency signals, 10-29

Counter Start VI
controlling pulse width measurement,

10-20
elapsed time counting, 10-34
event counting, 10-32
frequency and period measurement

high-frequency signals, 10-26
low-frequency signals, 10-29

frequency division, 10-36
single square pulse generation, 10-9

Counter Stop VI
controlling pulse width measurement,

10-20
elapsed time counting, 10-34
event counting, 10-32
frequency division, 10-36
period measurement of low-frequency

signals, 10-29
stopping counter generation, 10-16

counters/timers, 10-1
accuracy of counters, 10-15
component parts, 10-2
counter chips

8253/54, 10-4
Am9513, 10-4
DAQ-STC, 10-4
gating modes (figure), 10-3
TIO-ASIC, 10-4

counting when all counters are
used, 10-14

dividing frequencies, 10-35
elapsed time counting

8253/54, 10-34

Am9513, 10-33
connecting counters for counting,

10-30
TIO-ASIC and DAQ-STC, 10-33

event counting
8253/54, 10-33
Am9513, 10-32
connecting counters for counting,

10-30
TIO-ASIC and DAQ-STC, 10-32

frequency and period measurement,
10-22

connecting counters for measuring,
10-24

high-frequency signals, 10-25
how and when to measure, 10-22
low-frequency signals, 10-28

overview, 10-1
pulse train generation, 10-11

continuous pulse train, 10-11
finite pulse train, 10-12

pulse width measurement, 10-17
buffered pulse and period

measurement, 10-21
controlling pulse width

measurement, 10-20
determining pulse width, 10-18
increasing measurable width

range, 10-21
procedure, 10-17

SOURCE (CLK), GATE, and OUT pins,
10-2

square pulse generation, 10-5
duty cycles (figure), 10-6
single square pulse, 10-8
terminology, 10-5

stopping counter generation, 10-15
terminal count, 10-2
TTL signals, 10-1

crest factor, multitone signal generation, 17-4
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CTR Control VI
counting operations when all counters are

used, 10-14
frequency and period measurement,

10-26
current measurement example, 4-9
customer education, B-1

D
DAQ channel configuration, 3-3
DAQ Channel Name Control, 5-12
DAQ Channel Wizard, 3-3
DAQ devices, 2-1

communication with computers, 2-3
DAQ system options (figure), 2-3
software for, 2-4

compared with special-purpose
instruments, 2-2

overview, 2-1
DAQ Named Channel

averaging a scan (example), 4-5
measuring fluid level (example), 4-11
measuring temperature (example), 4-13

DAQ-STC counter
continuous pulse train generation, 10-11
controlling pulse width measurement,

10-20
counting operations when all counters are

used, 10-14
elapsed time counting, 10-33
frequency and period measurement

connecting counters, 10-25
high-frequency signals, 10-25
low-frequency signals, 10-28
period measurement, 10-23

frequency division, 10-36
maximum pulse width, period, or time

measurements (table), 10-21
overview, 10-4
single square pulse generation, 10-8

square pulse generation, 10-7
stopping counter operation, 10-16

data acquisition, 5-1. See also analog input;
analog output; counters/timers; digital I/O;
SCXI.

analog data organization, 5-17
buffered waveform acquisition, 6-21

circular buffers for accessing
data, 6-25

circular-buffered analog input
examples, 6-28

simple-buffered analog input
examples, 6-23

simultaneous buffered- and
waveform generation, 6-30

waveform acquisition with input
VIs, 6-21

channel, port, and counter addressing,
5-11

channel name addressing, 5-12
channel number addressing, 5-13
DAQ Channel Name Control, 5-12
DAQ VI parameters, 5-16
default and current value conventions, 5-6
error handling, 5-17
finding common DAQ examples, 5-1
limit settings, 5-13
location of VIs in LabVIEW, 5-2
organization of DAQ VIs, 5-2

Advanced VIs, 5-4
Analog Input VI palette organization

(figure), 5-3
Easy VIs, 5-3
Intermediate VIs, 5-4
Utility VIs, 5-4

polymorphic DAQ VIs, 5-4
single-point acquisition, 6-14

analog input control loops, 6-17
DC voltage measurement

example, 4-2
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multiple-channel, 6-15
single-channel, 6-14

triggered data acquisition, 6-30
analog triggering, 6-33
digital triggering, 6-31
hardware triggering, 6-31
software triggering, 6-36

VI parameter conventions, 5-5
waveform control, 5-6

attribute component, 5-7
components, 5-7
customizing, 5-7
delta t (dt) component, 5-7
extracting components, 5-9
front panel waveform representation,

5-101
start time (t0) component, 5-7
using waveform controls, 5-8
waveform data (Y) component, 5-7

data sampling. See sampling.
Data VIs, 19-4
DC signals, 6-1
DC voltage measurement example, 4-1

averaging a scan, 4-4
single-point acquisition, 4-2

DC/RMS measurements, 12-1
averaging to improve measurement, 12-3
common error sources, 12-4

DC overlapped with single sine
tone, 12-4

DC plus sine tone, 12-5
defining Equivalent Number of

Digits, 12-5
RMS measurements using windows,

12-8
using windows with care, 12-8
windowing to improve DC

measurements, 12-6
DC level of signals, 12-1
instantaneous DC measurements, 12-3
RMS level of signals, 12-23

RMS levels of specific tones, 12-9
rules for improving, 12-9

decibels
decibels and power and voltage ratio

relationship (table), 11-8
displaying amplitude in decibel

scale, 11-7
default input, 5-6
default setting, 5-6
Delayed Pulse Generator Config VI, 10-9,

10-26
Delayed Pulse (8353) VI, 10-10
Delayed Pulse-Int (9513) VI, 10-9
delta t (dt) component, in waveform

control, 5-7
device parameter, 5-16
device range, and ADC precision, 6-4
differential measurement system, 6-8

8-channel differential measurement
system (figure), 6-9

common mode voltage (figure), 6-10
Dig Buf Hand Iterative(653X) VI, 8-12
Dig Buf Hand Iterative(8255) VI, 8-13
Dig Buf Hand Occur(8255) VI, 8-13
Dig Buff Handshake In(8255) VI, 8-12
Dig Buff Handshake Out(8255) VI, 8-12
Dig Word Handshake In(653X) VI, 8-11
Dig Word Handshake In(8255) VI, 8-11
Dig Word Handshake Out(653X) VI, 8-11
Dig Word Handshake Out(8255) VI, 8-11
digital filtering, 16-1

advantages over analog filtering, 16-1
choosing and designing filters, 16-12
common digital filters, 16-2
FIR filters, 16-6
ideal filters, 16-3
IIR filters, 16-7

Bessel filters, 16-11
Butterworth filters, 16-7
Chebyshev filters, 16-8
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Chebyshev II (inverse) filters, 16-9
elliptic (Cauer) filters, 16-10

limit test design example, 15-7
practical (nonideal) filters, 16-4

passband ripple and stopband
attenuation, 16-5

transition band, 16-4
Digital IIR Filter VI, 4-19
digital I/O, 8-1

chips for digital I/O, 8-2
653X family, 8-2
8255 family, 8-3
E series family, 8-3

digital ports and lines (figure), 8-1
handshaking, 8-5

acquiring image from scanner
(example), 8-5

buffered, 8-11
circular-buffered, 8-13
digital data on multiple ports, 8-8
handshaking lines, 8-7
iterative-buffered, 8-12
nonbuffered, 8-11
simple-buffered, 8-12
types of handshaking, 8-10

immediate digital I/O, 8-3
Advanced Digital VIs, 8-5
channel names, 8-4
Easy Digital VIs, 8-4
overview, 8-3

pattern I/O, 8-13
continuous pattern I/O, 8-15
finite pattern I/O, 8-14
timed digital I/O, 8-14
timing control, 8-14

types of digital acquisition/generation,
8-2

digital multimeter example. See DMM (digital
multimeter) measurements (example).

digital trigger, definition of, 6-61
digital triggering, 6-31

diagram of digital trigger (figure), 6-31
examples, 6-32
timeline for post-triggered data

acquisition (figure), 6-32
DIO Port Config VI

SCXI digital input application
example, 9-31

SCXI digital output application
example, 9-33

Discrete Fourier Transform. See Fast Fourier
Transform (FFT).

Display and Output Acq'd File (scaled) VI, 7-6
distortion, definition of, 14-1
distortion measurements, 14-1

application areas, 14-1
harmonic distortion, 14-2

example nonlinear system
(figure), 14-2

SINAD, 14-4
total harmonic distortion, 14-2

overview, 14-1
dividing frequencies, 10-35
DMM (digital multimeter) measurements

(example), 4-1
AC voltage measurement, 4-6
current measurement, 4-9
DC voltage measurement, 4-1

averaging a scan, 4-4
single-point acquisition, 4-2

resistance measurement, 4-11
temperature measurement, 4-12

documentation
conventions used in manual, xxiii
related documentation, xxiv

down counter, 10-35
Down Counter or Divide Config VI, 10-36
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E
E series family of digital devices

immediate digital I/O
Advanced Digital VIs, 8-5
Easy Digital VIs, 8-4

overview, 8-3
E series MIO boards, 7-8
Easy VIs, 5-3
Easy Analog Input VIs, 6-16
Easy Counter VI, 10-9
Easy Digital VIs, 8-4
elapsed time counting

8253/54, 10-34
Am9513, 10-33
connecting counters for counting, 10-30
external connections (figure), 10-30
TIO-ASIC and DAQ-STC, 10-33

elliptic (Cauer) filters, 16-10
Equivalent Number of Digits (ENOD)

DC plus sine tone, 12-5
defining, 12-5
RMS measurements using windows, 12-8

error handling VIs, 5-17
Error In/Error Out clusters, 5-17, 19-7
event counting

8253/54, 10-33
Am9513, 10-32
connecting counters for counting, 10-30
external connections (figure), 10-30
TIO-ASIC and DAQ-STC, 10-32

Event or Time Counter Config VI, 10-32,
10-34

events, VISA, 20-5
examples

analog triggering, 6-35
circular-buffered analog input

examples, 6-28
available example applications, 6-29
basic analog input, 6-29

circular-buffered output (waveform
generation), 7-6

digital triggering, 6-32
DMM (digital multimeter) measurements,

4-1
AC voltage measurement, 4-6
current measurement, 4-9
DC voltage measurement, 4-1
resistance measurement, 4-11
temperature measurement, 4-12

finding common DAQ examples, 5-1
handling GPIB SRQ events

example, 20-6
limit testing, 15-5

digital filter design example, 15-7
modem manufacturing

example, 15-6
pulse mask testing example, 15-8

oscilloscope measurements
frequency and period of repetitive

signal, 4-16
maximum, minimum, and

peak-to-peak voltage, 4-14
SCXI applications, 9-15

analog input applications, 9-16
analog output example, 9-30
digital input example, 9-31
digital output example, 9-32
measuring pressure with strain

gauges, 9-27
measuring temperature

with RTDs, 9-24
with thermocouples, 9-16

multi-chassis applications, 9-33
temperature sensors for cold-junction

compensation, 9-17
VI examples, 9-20

simple-buffered analog input
examples, 6-23

graphing of waveforms, 6-23
multiple starts, 6-24
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writing to spreadsheet file, 6-25
software triggering, 6-39

Export Waveforms to Spreadsheet
File VI, 6-25

external control of acquisition rate, 6-39
channel and scan intervals using channel

clock (figure), 6-40
channel clock control, 6-41
round-robin scanning using channel

clock, 6-40
scan clock control, 6-43
simultaneous scan and channel clock

control, 6-44
external control of update clock, 7-7

input pins (table), 7-7
supplying external test clock from DAQ

device, 7-8
Extract Single Tone Information VI, 4-16,

4-19

F
Fast Fourier Transform (FFT)

fast FFT sizes, 13-2
FFT fundamentals, 13-2
single-channel measurements, 13-9

filtering. See also digital filtering.
anti-aliasing filters, 11-6
definition, 15-1
frequency and period measurement

(example), 4-17
SCXI signal conditioning, 9-5

Finite Impulse Response (FIR) filters. See FIR
(Finite Impulse Response) filters.

finite pattern I/O, 8-14
with triggering, 8-15
without triggering, 8-14

Finite Pulse Train (8253) VI, 10-13
Finite Pulse Train (DAQ-STC) VI, 10-13
Finite Pulse Train (NI-TIO) VI, 10-13
Finite Pulse Train Easy (9513) VI, 10-13

finite pulse train generation, 10-12
FIR (Finite Impulse Response) filters

common digital filters, 16-2
design characteristics, 16-6

floating signal sources, 6-3
analog input setting considerations, 6-6

code width calculation, 6-6
differential measurement system, 6-8
measurement precision for various

device ranges and limit settings
(table), 6-8

nonreferenced single-ended
measurement system, 6-12

referenced single-ended
measurement system, 6-11

unipolar vs. bipolar signals, 6-7
measurement system selection, 6-3

device range, 6-4
resolution, 6-4
signal limit settings, 6-5

frequency analysis, 13-1
aliasing, 13-2
averaging to improve measurement, 13-7

peak hold averaging equation, 13-8
RMS averaging equation, 13-7
vector averaging equation, 13-8

dual-channel measurements—frequency
response, 13-10

Fast Fourier Transform
fast FFT sizes, 13-2
FFT fundamentals, 13-2

frequency vs. time domain, 13-1
magnitude and phase, 13-4
single channel measurements

FFT, 13-9
power spectrum, 13-9

windowing, 13-5
periodic waveform created from

sampled period (figure), 13-6
signals and window choices

(table), 13-6
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frequency and period measurement, 10-22
connecting counters for measuring, 10-24
high-frequency signals, 10-25
how and when to measure, 10-22
low-frequency signals, 10-28

frequency and period measurement
(example), 4-16

basic procedure, 4-16
filtering technique, 4-17
instrument technique, 4-17

frequency division, 10-35
8253/54, 10-37
Am9513, 10-36
TIO-ASIC or DAQ-STC, 10-36
wiring counters (figure), 10-35

frequency domain signals, 6-1
front panel, waveform control, 5-10
Function Generator VI, 7-6

G
gain

definition, 5-15
limit settings, 5-15
SCXI, 9-13

settling time, 9-14
GATE signal

counter gating modes (figure), 10-3
counter theory of operation, 10-2
pulse width measurement, 10-17

gating modes of counters (figure), 10-3
Gaussian White Noise, 17-8
General Error Handler VI, 10-20
Generate 1 Point on 1 Channel VI, 7-2
Generate Continuous Sinewave VI, 7-5
Generate Delayed Pulse-Easy (9513) VI, 10-9
Generate N Updates example VI, 7-4
Generate N Updates-ExtUpdateClk VI, 7-7,

7-8
Generate Pulse Train on FOUT VI, 7-8, 10-14

Generate Pulse Train on FREQ_OUT VI, 7-8,
10-14

Generate Pulse Train VI
continuous pulse train generation, 10-12
stopping counter generation, 10-16

Generate Pulse Train (8253) VI, 10-12
Generate Pulse Train (DAQ-STC) VI, 10-11,

10-36
Generate Pulse Train (NI-TIO) VI, 10-11,

10-36
Generate Single Pulse (DAQ-STC) VI, 10-9
Generate Single Pulse (NI-TIO) VI, 10-9
Get Timebase (8253) VI, 10-27
Get Waveform Components function, 5-9
Getting Started VI

purpose and use, 19-2
running interactively, 19-7
verifying communication with

instruments, 19-7
Getting Started Analog Input VI

reading amplifier offset, 9-19
reading temperature sensor on terminal

block, 9-18
GPIB communications, A-3

Controllers, Talkers, and Listeners, A-3
hardware specifications, A-4

GPIB property, in VISA, 20-4
grounded signal sources, 6-2

H
handshaking, 8-5

acquiring image from scanner (example),
8-5

buffered, 8-11
circular-buffered, 8-13
digital data on multiple ports, 8-8
handshaking lines, 8-7
iterative-buffered, 8-12
nonbuffered, 8-11
simple-buffered, 8-12
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types of handshaking, 8-10
Hann (Hanning) window

digits vs. measurement time for DC+tone
using Hann window (figure), 12-7

improving DC measurements, 12-6
signals and window choices (table), 13-6

hardware triggering, 6-31
analog, 6-33
digital, 6-31

harmonic distortion, 14-2
example nonlinear system (figure), 14-2
SINAD, 14-4
total harmonic distortion, 14-2

highpass filters, 16-3
high-precision timing. See counters/timers.

I
ICTR Control VI

determining pulse width, 10-19
finite pulse train generation, 10-26
frequency and period measurement,

10-26
stopping counter generation, 10-16

ICTR Timebase Generator VI, 10-10, 10-14
IIR (Infinite Impulse Response) filters, 16-7

Bessel filters, 16-11
Butterworth filters, 16-7
Chebyshev filters, 16-8
Chebyshev II (inverse) filters, 16-9
common digital filters, 16-2
elliptic (Cauer) filters, 16-10

immediate digital I/O, 8-3
Advanced Digital VIs, 8-5
channel names, 8-4
Easy Digital VIs, 8-4
overview, 8-3

Index Array function, 5-18, 6-22
Infinite Impulse Response (IIR) filters. See IIR

(Infinite Impulse Response) filters.
Initialize Instrument Driver VI, 19-3, 19-6

installation. See also configuration.
instrument drivers, 19-1
procedure, 3-2
relationship between LabVIEW, driver

software, and measurement hardware
(figure), 3-1

Instrument Descriptor, 19-6
instrument drivers, 19-1

common inputs and outputs, 19-6
Error In/Error Out clusters, 19-7
Resource Name/instrument

Descriptor, 19-6
computer/instrument communication, 2-6
installing, 19-1
kinds of drivers, 19-4

IVI drivers, 19-5
LabVIEW drivers, 19-5
VXIplug&play drivers, 19-5

model for drivers (figure), 19-2
obtaining drivers, 19-1
organization of, 19-2
purpose and use, 2-6
verifying communication with

instruments, 19-7
running Getting Started VI

interactively, 19-7
VISA communication, 19-8

instruments
computer-based instruments, A-6
GPIB communications, A-3
history of instrumentation, 1-1
PXI modular instrumentation, A-6
serial port communication, A-1
special purpose instruments

communication with computers, 2-5
compared with DAQ devices, 2-2

using LabVIEW to control instruments,
18-1

VXI, A-4
Intermediate VIs, 5-4
iteration input, 5-16
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iterative-buffered handshaking, 8-12
IVI instrument drivers, 19-5
IVI Logical Names, assigning, 3-4
IviScope Auto Setup [AS] VI, 4-15
IviScope Close VI, 4-15
IviScope Configure Channel VI, 4-15
IviScope Initialize VI, 4-15
IviScope Read Waveform VI, 4-19
IviScope Read Waveform measurement

[WM] VI, 4-15

L
Lab/1200 boards, 7-10
limit settings

ADC precision effects, 6-5
configuring, 5-13
definition, 5-13

limit testing, 15-1
applications, 15-5

digital filter design example, 15-7
modem manufacturing example,

15-6
pulse mask testing example, 15-8

results of testing, 15-4
continuous mask (figure), 15-4
segmented mask (figure), 15-5

setting up automated test system, 15-1
specifying limits, 15-1

ADSL signal recommendations
(table), 15-3

results of testing, 15-4
segmented limit specified using

formula (figure), 15-3
using formula, 15-3

Listeners, GPIB, A-3
locking, in VISA, 20-7

shared locking, 20-9
Low Sidelobe (LSL) window, 12-7
lowpass filters, 16-3

M
Macintosh computers

NI-488.2 Configuration utility, 3-3
NI-DAQ Configuration utility, 3-3
serial port configuration, 3-4

magnitude of frequency component, 13-4
manual. See documentation.
maximum, minimum, and peak-to-peak

voltage measurement (example), 4-14
Measure Buffered Pulse (DAQ-STC)

example, 10-21
Measure Buffered Pulse (NI-TIO)

example, 10-21
Measure Frequency (DAQ-STC) VI, 10-25
Measure Frequency (NI-TIO) VI, 10-25
Measure Frequency Easy (9513) VI, 10-25
Measure Hi Frequency (8253) VI, 10-27
Measure Hi Frequency–DigStart (8253) VI,

10-27
Measure Lo Frequency (8253) VI, 10-27,

10-29
Measure Period (DAQ-STC) VI, 10-28
Measure Period (NI-TIO) VI, 10-28
Measure Period Easy (9513) VI, 10-28
Measure Pulse (DAQ-STC) VI, 10-18
Measure Pulse (NI-TIO) VI, 10-18
Measure Pulse Width or Period VI, 10-18
Measure Short Pulse Width (8253) VI, 10-19
measurement

definition, 1-1
history of instrumentation for, 1-1
system components for virtual

instruments, 1-2
Measurement & Automation Explorer, 3-3
measurement analysis

data sampling, 11-2
anti-aliasing filters, 11-6
decibel display of amplitude, 11-7
sampling rate, 11-3
sampling signals, 11-2

importance of data analysis, 11-1
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measurement examples. See example
measurements.

message-based communication, in VISA, 20-1
Moving Average (MA) filters, 16-2
Multi Board Synchronization VI, 8-14
multiple-channel, single-point

acquisition, 6-15
multiplexed mode, SCXI

analog input modules, 9-9
analog output modules, 9-10
digital and relay modules, 9-10
SCXI-1200 (Windows), 9-9

multitone signal generation, 17-3
crest factor, 17-4
phase generation, 17-4
swept sine vs. multitone, 17-6

My Single-Scan Processing VI, 6-17

N
NI Developer Zone, B-1
NI-488.2 Configuration utility, 3-3
NI-DAQ Configuration utility, 3-3
noise generation, 17-7

Gaussian White Noise, 17-8
Periodic Random Noise (PRN), 17-9
Uniform White Noise, 17-8

nonbuffered handshaking, 8-11
nonreferenced single-ended (NRSE)

measurement system, 6-12
Nyquist frequency, 6-2, 11-4
Nyquist theorem, 6-2

O
oscilloscope measurements (example), 4-14

frequency and period of repetitive
signal, 4-16

basic procedure, 4-16
filtering technique, 4-17
instrument technique, 4-17

maximum, minimum, and peak-to-peak
voltage, 4-14

OUT signal, 10-2

P
parallel mode, SCXI

analog input modules, 9-10
digital modules, 9-11
SCXI-1200 (Windows), 9-10

passband of filters, 16-4
passband ripple, 16-5
pattern I/O, 8-13

continuous pattern I/O, 8-15
finite pattern I/O, 8-14

with triggering, 8-15
without triggering, 8-14

timed digital I/O, 8-14
timing control, 8-14

peak hold averaging equation, 13-8
peak-to-peak voltage measurement

(example), 4-14
Periodic Random Noise (PRN), 17-9
phase generation, multitone signal

generation, 17-4
phase of frequency component, 13-4
polymorphic DAQ VIs, 5-4
power spectrum, in frequency analysis, 13-9
properties, VISA

GPIB property, 20-4
serial property, 20-4
using property nodes, 20-2
VXI Logical Address Property (figure),

20-4
VXI property, 20-5

pulse mask limit testing example, 15-8
pulse train generation, 10-11

continuous pulse train, 10-11
finite pulse train, 10-12

Pulse Train VIs, 7-8
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pulse width measurement, 10-14
buffered pulse and period measurement,

10-21
controlling pulse width measurement,

10-20
determining pulse width, 10-18
increasing measurable width range, 10-21
internal timebases and maximum

measurements (table), 10-21
procedure, 10-17

Pulse Width or Period Meas Config VI
controlling pulse width measurement,

10-20
period measurement of low-frequency

signals, 10-29
PXI modular instrumentation, A-6

R
Read 1 Pt from Dig Line(E) VI, 8-5
Read from 1 Dig Line(653X) VI, 8-4
Read from 1 Dig Line(8255) VI, 8-5
Read from 1 Dig Port(653X) VI, 8-5
Read from 1 Dig Port(8255) VI, 8-6
Read from 1 Dig Port(E) VI, 8-5
Read from 2 Dig Ports(653X) VI, 8-5
Read from 2 Dig Ports(8255) VI, 8-6
Read from Digital Port VI, 9-31
Read from Digital Port(653X) VI, 8-5
Read from Digital Port(8255) VI, 8-6
Read Status Byte VI, 20-6
referenced single-ended (RSE) measurement

system, 6-11
register-based communication, in VISA, 20-1
resistance measurement example, 4-11
resolution of ADC bits, 6-4
Resource Name of instrument drivers, 19-6
RMS averaging equation, 13-7
RMS measurements. See DC/RMS

measurements.

round-robin scanning
devices for, 6-40
using channel clock, 6-40

RS-232 (ANSI/EIA-232) serial port, A-2
RS-422 (AIA RS-422A Standard) serial

port, A-3
RS-485 (EIA-485 Standard) serial port, A-3
RSE (referenced single-ended) measurement

system, 6-11
RTD Conversion VI, 9-26

S
sampling, 11-2

actual signal frequency components
(figure), 11-5

aliasing effects of improper sampling rate
(figure), 11-4

analog signal and corresponding sampled
version (figure), 11-3

anti-aliasing filters, 11-6
avoiding aliasing, 11-4
decibel display of amplitude, 11-7
digital representation or sampled

version, 11-3
sampling effects at different rates

(figure), 11-6
sampling frequency, 11-2
sampling interval, 11-2
sampling period, 11-2
sampling rate, 11-3
sampling signals, 11-2
signal frequency components and aliases

(figure), 11-5
Scaling Constant Tuner VI, 9-20, 9-22
scan

averaging a scan (example), 4-4
definition, 6-13
number of scans to acquire, 6-13
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scan clock
acquiring data with external scan clock

(figure), 6-43
controlling externally, 6-43

simultaneous control of scan and
channel clocks, 6-44

external scan clock input pins
(table), 6-43

scan-clock orientation of LabVIEW, 6-41
scan rate, definition of, 6-14
SCXI, 9-1

calibration, 9-35
default calibration constants, 9-37
EEPROM calibration constants, 9-35
one-point calibration, 9-39
recalibrating modules for signal

generation, 9-41
SCXI Cal Constants VI, 9-36
SCXI Calibrate VI, 9-36
signal acquisition calibration

methods, 9-37
two-point calibration, 9-40

common applications, 9-15
analog input applications, 9-16
analog output example, 9-30
digital input example, 9-31
digital output example, 9-32
measuring pressure with strain

gauges, 9-27
measuring temperature

with RTDs, 9-24
with thermocouples, 9-16

multi-chassis applications, 9-33
temperature sensors for cold-junction

compensation, 9-17
VI examples, 9-20

hardware setup, 9-5
common configurations (figure), 9-6
components (figure), 9-7
SCXI chassis (figure), 9-8

multiplexed mode
analog input modules, 9-9
analog output modules, 9-10
digital and relay modules, 9-10
SCXI-1200 (Windows), 9-9

operating modes, 9-8
parallel mode

analog input modules, 9-10
digital modules, 9-11
SCXI-1200 (Windows), 9-10

programming considerations, 9-11
channel addressing, 9-12
gains, 9-13
settling time, 9-14

signal conditioning
amplification, 9-3
basic principles, 9-1
common types of transducers/signals

(table), 9-3
filtering, 9-5
isolation, 9-5
linearization, 9-4
phenomena and transducers

(table), 9-1
transducer excitation, 9-4

software installation and configuration,
9-11

SCXI Cal Constants VI
calibrating SCXI modules, 9-36, 9-41
SCXI one-point calibration, 9-39
SCXI two-point calibration, 9-40

SCXI Calibrate VI, 9-36
SCXI Temperature Monitor VI, 9-23
SCXI Thermocouple VIs, 9-19
SCXI-116x Digital Output VI, 9-33
SCXI-1100 Thermocouple VI, 9-20
SCXI-1100 Voltage VI, 9-20
SCXI-1122 Voltage VI, 9-23
SCXI-1124 Update Channels VI, 9-30
SCXI-1162HV Digital Input VI, 9-32
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serial port communication, A-1
hardware overview, A-2
speed of data transmission, A-2
on your system, A-3

serial port configuration
Macintosh computers, 3-4
UNIX computers, 3-4

serial property, in VISA, 20-4
settling time, SCXI, 9-14
Shannon’s theorem, 11-4, 13-2
signal conditioning. See also SCXI.

amplification, 9-3
basic principles, 9-1
common types of transducers/signals

(table), 9-3
filtering, 9-5
isolation, 9-5
linearization, 9-4
phenomena and transducers (table), 9-1
transducer excitation, 9-4

signal divider, 10-35
signal generation, 17-1

common test signals, 17-1
multitone generation, 17-3

crest factor, 17-4
phase generation, 17-4
swept sine vs. multitone, 17-6

noise generation, 17-7
Gaussian White Noise, 17-8
Periodic Random Noise (PRN), 17-9
Uniform White Noise, 17-8

signals used for typical measurements
(table), 17-1

signals
categories of analog signals, 6-1
defining analog signals, 6-1

simple-buffered analog input examples, 6-23
buffered waveform acquisition, 6-23
graphing of waveforms, 6-23
multiple starts, 6-24
writing to spreadsheet file, 6-25

simple-buffered handshaking, 8-12
Simul AI/AO Buffered (E Series MIO) VI, 7-8
Simul AI/AO Buffered (Lab/1200) VI, 7-10
Simul AI/AO Buffered Triggered (E Series

MIO) VI, 7-8
Simul AI/AO Buffered Triggered (Lab/1200)

VI, 7-10
simultaneous buffered waveform acquisition

and generation, 7-8
E series MIO boards, 7-8
Lab/1200 boards, 7-10
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control, 5-7
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time stamping digital data, 8-13
Timebase Generator (8253) VI, 10-34
timing. See counters/timers.

TIO-ASIC counter
continuous pulse train generation, 10-11
controlling pulse width measurement,

10-20
elapsed time counting, 10-33
event counting, 10-32
frequency and period measurement

connecting counters, 10-25
high-frequency signals, 10-25
low-frequency signals, 10-28
period measurement, 10-23

frequency division, 10-36
maximum pulse width, period, or time
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overview, 10-4
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overview, 7-1
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