VISA Eventsin NI-VISA

I ntroduction

The VISA operations Read, Write, In and Out allow basic I/O operations from the
controller to instruments. These operations make up the basics of instrument 1/O, but
there are many cases where these simple communication commands are not sufficient to
utilize all the functionality built into GPIB and VX1 devices.

Consider the following situation. Suppose there is a system which contains a
sophisticated message based VX1 device that can perform a variety of different
measurement operations. Some of these measurements require as much as severa
seconds for the device to obtain a stable reading. With the VISA operations mentioned
above thereis not a good way to handle this situation.

Once the command to obtain a measurement iswritten to the device thereis no way of
knowing when the measurement is available. After doing the write command, the
program could continuously attempt to do VISA Reads from the device until oneis
successful. However, there may be other operations that the application needs to perform
at thesametime. What if the program needs to control other instruments, write data to
disk, or update the screen display? If obtaining the results of the measurement from the
instrument is not urgent, it may be possible to wait along time to seeif theresult is
available. Alternatively the application might attempt to read the result periodically until
itisavailable, but if it is performing alot of other operations this may not be possible.
Also, if speed isimportant thisis not efficient.

Clearly thereis aneed for some other means of communication between VXI resources
and aVISA application. In VISA, events provide this alternate means of
communication. Events are notifications to the application that a certain condition has
occurred in the system. Additionally, these naotifications occur through a channe
independent of the data path. This independence allows the natifications to occur while
datais being transferred.

This application note discusses VISA events and how to use them. It goes over some of
the options the programmer hasin dealing with an event. It also discusses what attributes
are associated with each event and how these attributes can be used in a VISA program.
At the end of the document, there are three examples of programming with VISA events.
Thefirst example demonstrates the synchronous method of waiting for a GPIB SRQ.

The exampleis written with LabWindows/CV I but the code would be the same for any C
compiler and isvery smilar in Visual Basic. The second exampleisa LabVIEW
example also showing synchronous SRQ events. The third example, also written in
LabWindows/CVI demonstrates the use of asynchronous 1/0. 1t uses VISA eventsto
notify the program that the asynchronous I/O operation has completed.

Events and Event Attributes

VISA events are objects, and in being objects, they can have attributes associated
with them.Currently there are five events defined for instrument control. Listed below
are the defined events and their corresponding attributes.

VISA Event

Associated Attributes

VI _EVENT_SERVI CE_REQ-
notification of a service request from a
device on the bus (valid for VXI or GPIB)

None

VI _EVENT_VXI _SI GP - notification
of aVXlbussignal or VXIbusinterrupt
(valid only for VXI)

VI _ATTR_SI GP_STATUS | D—the
16 bit Statug/ID value retrieved during
the IACK cycle or from the signa
register

VI _EVENT_TRI G- netification of a
V Xlbus Trigger (valid only for VXI)

VI _ATTR RECV_TRI G_| D-the
trigger line on which the trigger was
received

*V| _EVENT_| O COVPLETI ON—
notification that an asynchronous 1/0
operation has completed (valid for all
interfaces)

VI _ATTR_STATUS — status
information about the operation

VI _ATTR_RET_COUNT — contains the
value for the number of bytes (or
elements) transferred

VI _EVENT _VXI VME | NTR-thisis
notification of a VXlbus or VMEbus
interrupt (valid only for VXI)

VI _ATTR I NTR_STATUS | D-the
32 bit Status/ID value retrieved during
the IACK cycle

VI _ATTR _RECV_I NTR_LEVEL —the
VXI interrupt level on which the
interrupt was received

* not supported in LabVIEW

Preparing for an Event

For an event to be detected in VISA, the event must first be enabled. Enabling an
event smply configures the driver up to detect it and tells the driver what mechanism to
usein the handling of the event for the given session. It isimportant to realize that thisis
required for all event types, and if an event is not enabled it will not be detected by VISA.
The function used to enable eventsisvi Enabl eEvent () .

status = vi Enabl eEvent (Vi Session vi, viEventType event Type,
Vi Ul nt 16 nmechani sm, Vi EventFilter context);

Note: the context parameter is reserved for future use and currently the constant VI_NULL should be

used for this parameter.

YISA zession TREA
event bype Cp

mechanizm [1: %|_OUELE]
2rror in [ho ermar]

¥I5A Enable Event

dup %154 session

efrar oLt

In handling events, there are two possible mechanisms that can be employed. These
two mechanisms are the gueuing mechanism (synchronous) and the callback mechanism
(asynchronous). The queuing mechanism is generally used when the servicing of the
event is not time-critical. The callback mechanism is used for more time-critical
handling of events and isinvoked immediately on every occurrence of the specified event
type. The mechanism of the event handling is also specified in the method
vi Enabl eEvent () .

To specify which mechanism is to be used, the parameters VI_QUEUE and/or
VI_HNDLR aresent tovi Enabl eEvent asthethird parameter. For example, to set
up a queuing mechanism to handle GPIB SRQ events the syntax would be:

vi Enabl eEvent (instr, VI_EVENT_SERVI CE_REQ VI _QUEUE, VI _NULL)

Handling an Event Synchronously— The Queuing M ethod

In the queuing method of handling events, the driver keeps track of all the events
that occur and stores them in a queue alowing the programmer the flexibility of receiving
events only when requested. Events are “dequeued” with thevi WAi t OnEvent ()
method.

Vi St atus vi it OnEvent (Vi Session vi, Vi EventType inEvent Type, Vi U nt32
ti meout, Vi PEvent Type out Event Type, Vi PEvent out Cont ext)

timeaut (0] ———

¥I5A session HEA dup %154 seszion
event tppe .3 L event type
event session [for class]f ievent FEEZION
&rar in [hio erar] errar oLt

YISA Wait on Event

If one or more events are available, the function will pull an event off of the
gueue, oldest event first, and immediately continue. If no event is available in the queue
when the program reaches this call, the program will halt until an event isreceived or
until the timeout period is exceeded.

To check the queue without waiting for the next event to occur, a call can be
made tovi Wai t OnEvent () with the timeout set toVI_TMO_IMMEDIATE in C or
Visual Basic, or by wiring a zero for the timeout valuein LabVIEW. Inthiscasg, if an
event exigts, it is pulled of the queue and goes directly into the handling routine. If no
event iswaiting, the function returns immediately and the code continues.

By default, the VISA driver will queue up to 50 events per session. If additional
events occur, the new events will be discarded. However, VISA does allow the

programmer to explicitly specify the size of the event queue if he or she wishesto do so.
Thisisdonewith the VISA attribute VI_ATTR_MAX_QUEUE_LENGTH. Theone
stipulation is that this call must be made befor e the event is enabled for a given session.

Example:

status = vi SetAttribute(instr, VI_ATTR MAX QUEUE_LENGTH, 10);
status = vi Enabl eEvent (instr, VI_EVENT_SERVI CE REQ VI _QUEUE,
VI _NULL) ;

E," [nstr E: |

rhdan Queue Len e

Each event type in a session has an individual queue. In other words thereisan
event queue per session as well as per event type. For example, if a queue size of 10
eventsis defined for a VXI-DAQ card, this means that VISA would be able to queue up
to 10 VI_EVENT_IO_COMPLETION eventsand 10 VI_EVENT_TRIG events
provided that both of these events have been enabled.

It isimportant to remember at this point that every occurrence of an event is
accessed viaahandletoit. Thisisautomatically taken care of by vi Wai t OnEvent ().
When an event is picked off the queue by viwaitOnEvent(), a handle to that specific
event getsreturned. This handle can be used to reference the particular occurrence of an
event when examining attributes and should be passed to vi Cl ose() to close the handle
to the event once it has been handled.

Example A demonstrates the queuing (synchronous) mechanism of event handlinginaC
based program.

Example B demonstrates the queuing (synchronous) mechanism of event handling in
LabVIEW.

Handling an Event Asynchronously — The Callback M echanism

Another option that VISA provides for handling eventsis the callback
mechanism. The callback mechanism is sometimes referred to as the handler mechanism.
The concept behind the callback mechanism is the following: Before an event is enabled,
ahandler function isingtalled. Thisisafunction that will automatically execute every
time an event isreceived. With this mechanism, very time critical events can be handled
immediately. Currently VISA allows only one handler callback to be installed per
session, but this may change in later versions of VISA. The handler callback isinstalled

by the method vi | nst al | Handl er () and should be called before
vi Enabl eEvent () .

Vi Status vilnstall Handl er (Vi Session vi, Vi Event Type event Type,
Vi Hndl er handl er, Vi Addr user Handl e)

One nice feature of the callback handler isthat the driver automatically handles
the closing of each event handle. No additional calls need to be made in the code to take
care of these occurrences.

Example C demonstrates how to use a callback (asynchronous) handler to handle events.

It isimportant to note that because of the dataflow programming structure of
LabVIEW it is not possible to use the callback mechanism of event handling in
LabVIEW. ThereisaWait On Event Asynchronously.vi which uses LabVIEW
programming techniques to simulate asynchronous event detection. With this function,
any code running parallel to the dataflow of the VISA sequence will continue to execute.
Thisvi isnot truly asynchronous but rather polls for an event to occur.

Enabling Both handling M echanisms Simultaneously

It isalso possible to use both the queuing and the callback methods of event handling
simultaneoudy. After an initial call tovi Enabl eEvent () specifying one mechanism,
a subsequent call specifying the other mechanism will enable both mechanisms of
handling at the sametime. It isimportant to note that this successive calling will NOT
undo the first mechanism.

status = viEnableEvent (instr, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL)
status = viEnableEvent (instr, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL)

To set up both mechanisms to be enabled simultaneously with one function call the
following syntax can be used:

status = viEnableEvent (instr, VI_EVENT_SERVICE_REQ, VI_QUEUE|VI_HNDLR, VI_NULL)

What To Do With An Event Oncelt | s Received

Notification that an event has occurred isn’t much good if the program doesn’t
react with the proper response. Often times just knowing that an event has occurred isn’'t
enough. More information generally needs to be known such as why the event has
occurred. VISA provides ameans for gathering this information via a concept called
attributes. An attribute is basically a characteristic of any object. In thisdiscussion, the
object isthe handle to the particular occurrence of an event and the attribute is a value
that givesinformation unique to that particular occurrence of the event. Common

attributes for each event were mentioned on page 1 of this application note, but an
example is discussed below.

A VXI system has multiple instruments and a V X1-device at logical address 10
asserts an interrupt because it is ready to pass data to the controller. Theinterrupt is
received by the VISA driver and is passed to the VISA code (either asynchronoudly with
ahandler or synchronoudy with vi Wai t OnEvent ()). The method
vi Get At tri but e() isthen called to get thevalue of VI_ATTR_SIGP_STATUS ID.
This attribute is a 16 bit value in which the lower 8 bits contain the logical address of the
device asserting the interrupt (thisis always the case with all VX1 devices) and the upper
8 hits contain information as to why the interrupt was asserted. The driver decodes the
low bits and determines that the device at logical address 10 asserted the interrupt; the
application can determine this as well, but the session used to get the event already
contains thisinformation. It isup to the program to interpret the upper 8 bits as the
message “Ready to send data.” Now the program can handle this information
accordingly.

Currently, theevent VI_EVENT_SERVICE_REQ does not have an attribute
defined for it other than VI_ATTR_EVENT_TYPE. Because of thisfact,
vi Get At t ri but e() cannot be used to get the status information. Instead, a call must
immediately be madeto vi ReadSTB() . In fact, if thiscall isnot made, it will prevent
further service requests from being detected.

Another attribute that isimportant to mention when discussing VISA eventsis
VI_ATTR TRIG_ID. Thisisasession attribute (as opposed to an event attribute) which
is used to determine which trigger events a session will receive. By default it is set to
software triggers. This attribute can only be changed befor e trigger events are enabled.
After they areenabled it isaread only value. The following line of code shows how to
set the ID to detect TTL triggerson trigger line 3.

status = viSetAttribute (instr, VI_ATTR TRIGID, VI_TR G TTL3);
Disabling Events

Once the program reaches a point whereit is no longer necessary to detect events, a
call should be madetovi Di sabl eEvent () .

Vi St atus vi Di sabl eEvent (Vi Sessi on vi, Vi Event Type event Type,
Vi Ul nt 16 mechani sm

YISA session WHEA dup 154 seszion
event type - 40
mechanism [1: V|_QUELE] f errar out

ermar in [ho errar)

¥ISA Disable Event

viDisableEvent() notifies the driver that it isno longer necessary to detect events and
report them to the application. This method will only disable the specified event on the
gpecified session. Using viDisableEvent() will prevent a queue from receiving additional
events, but it will not clear out any events that are already present in the queue. To flush
the queue, aprogram can call vi Di scar dEvent s() which will safely clean out the
gueue and close each event in the queue. The C prototype and LabVIEW vi arelisted
bel ow:

Vi Status vi Di scardEvents (Vi Session vi, ViEventType eventtype, ViU ntl16
mechani sm

VISA zession ﬁ-ﬂ‘-ﬂ dup W54 zeszion
event tupe LA P
mecharism (1 vl_QUELE] f—ﬁm errar cluster
error in [no eror)

¥I5A Discard Events

In an earlier section it was mentioned that an event could be set for both synchronous
and asynchronous event handling. If thisisthe setup, a program can disable one of these
and leave the other in place by calling vi Di sabl eEvent () and specifying the method
to be disabled. To disable both methods two calls must be made to
vi Di sabl eEvent () or else the methods can be OR-ed together as discussed for
vi Enabl eEvent () .

Conclusion

VISA events provide a means of reporting information about the status of an
instrumentation busto the program. VISA also provides the programmer with the
flexibility to decide how to receive and respond to the event. This ability to use events,
along with the programming ease of use of VISA, make VISA avery powerful solution
for any instrumentation system, whether it be VX1, GPIB, serial or parald.

Other VI SA Resour ces

NI-VISA User Manual
NI-VISA Programmer Reference Manual

Example A
/**/
/* This example shows how to enable VISA to detect SRQ events

/* The program writes a command to a device and then waits to receive

/* an SRQ event before trying to read the response.

/* General Program Flow:

/* Open A Session To TheVisa VISA Resource Manager

/* Open A Session To A GPIB Device

/* Enable SRQ Events

/* Write A Command To The Instrument
/* Wait to receive an SRQ event

/* Read the instrument's status byte

/* Usethedata

/* Closethe handleto the event

/* Disable SRQ Events

/* Close The Instrument Session

/* Close The Resource Manager Session

/***/

#include <visa.h>
#include<ans_c.h>

static ViUInt32 timeout = 30000; //Timeout in milliseconds
gatic ViEvent ehandleg

dtatic ViEventType etype;

gatic ViStatus status;

gatic ViSession inst,dfItRM;

gatic Viulnt16 stb;

gtatic ViUInt32 rcount, bytes;

int main (int argc, char *argv[])

{

/* First we open asession to the VISA resource manager. We are
* returned a handle to the resource manager session that we must
* useto open sessions to specific instruments.

*/

status = viOpenDefaultRM (& dfltRM);

if (status< VI_SUCCESS)

{
printf("The session to the Resource Manager Could Not Be Opened");
exit (EXIT_SUCCESS);

}

/*

* Next we use the resource manager handle to open asessiontoa
GPIB instrument at address 2. A handleto this session is

* returned in the handleinst.

*/

*

status = viOpen (dfltRM, "GPIB::2::INSTR", VI_NULL, VI_NULL, &inst);
if (status< VI_SUCCESS)

{
printf("The session to the device smulator”);
viClose(dfItRM);
exit (EXIT_SUCCESS);

}

/* Now we must enable the service request event so that VISA

* will receive the events. Note: one of the parametersis

* VI_QUEUE indicating that we want the events to be handled by

* asynchronous event queue. The alternate mechanism for handling

* eventsisto set up an asynchronous event handling function using

* the VI_HNDLR option. The events go into a queue which by default
* can hold 50 items. This maximum queue size can be changed with

* an attribute but it must be called before the events are enabled.

*/

status = viEnableEvent (ingt, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);

if (status< VI_SUCCESS)

{
printf("The SRQ event could not be enabled");
viClosg(inst);
viClose(dfItRM);
exit (EXIT_SUCCESS);
}
/*

* Now the VISA write command is used to send areguest to the
* |nstrument to generate a sine wave and assert the SRQ line

* When it isfinished.

*/

status = viWrite (inst, "command string”, bytes, &rcount);

if (status< VI_SUCCESS)

{
printf("Error writing to the instrument");
viClosg(inst);
viClose(dfItRM);
exit (EXIT_SUCCESS);
}
/*

* Now we wait for an SRQ event to be received by the event queue.
* Thetimeout isin milliseconds and is set to 30000 or 30 seconds.
* Noticethat a handleto the event is returned by the wait on

* event call. This event handle can be used to obtain various

* attributes of the event. It should also be closed in the program

* to release memory for the event.

*/
dtatus = viwaitOnEvent (inst, VI_EVENT_SERVICE_REQ, timeout, & etype,
&ehandle);
if (status>= VI_SUCCESS)
{
status = viReadSTB (ingt, & stb);
if (status< VI_SUCCESS)
{
printf("There was an error reading the status byte");
viClosg(inst);
viClose(dfItRM);
exit(VI_SUCCESS);
}
}

{
printf("There was an error waiting on the event");
viClosg(inst);
viClose(dfItRM);
exit(VI_SUCCESS);
}
/*

* |f an SRQ event was received we first read the status byte with
* the viReadSTB function. This should always be called after

* recelving an SRQ event or subsequent events will not be

* received properly. Then the dataisread and the event is closed
* and the dataisdisplayed. Otherwise sessions are closed and the
* program terminates.

/* At this point the command to tell the instrument to send back dataisissued.
* Perhaps even a function to print the data to the screen
* When finished with the event, the handle must be closed
*/

gtatus = viClose (ehandle);
if (status< VI_SUCCESS)

{
printf("There was an error closing the event handl€");
viClosg(inst);
viClose(dfItRM);
exit(VI_SUCCESS);
}

/* Now we should disable the previousy enabled event for completeness */
status = viDisableEvent (ingt, VI_EVENT_SERVICE_REQ, VI_QUEUE);

if (status< VI_SUCCESS)

{
printf("There was a error closing one of the sessions’);
viClose(dfItRM);
exit(VI_SUCCESS);

}

/*Now we must close the session to the instrument and the session
to the resource manager.

*/

status = viClose (inst);

gtatus = viClose (dfltRM) + status;

if (status< VI_SUCCESS)
{

}

return O;

printf("There was a error closing one of the sessions’);

10

Example B

[event session [for class]]

shatug read buffer
: : Chg]
B ermon [5TRING TOWRITE [F—
sl 10000
(B A5 | (B |=| 15 | (B] (B
E T o abc 1028 b -— erar ouk
GFRIED: 2 INSTR g i] =— I_I_a i v
nE 4 En B 0
=3
< 3FFF 200
FD Status} -------
1. VISA Session:

Tells VISA to create a data structure of the necessary format (in this case a generic instrument typeis
used). Thisiscreated by dropping aVISA Session Control on thefront pandl. Thisislocated in the
Path/Refnum Controls Sub-Palette. To change the session type, pop up on the control and sdlect the
appropriate type from the VISA Class menu.
2. VISA Open
Open a session to the GPIB instrument at primary address 2.
3. VISA Enable Event
Prepares VISA to detect SRQ's. Thisis done with the value of hex 3FFF200B.
4. VISA Write
Send a command to the device to prepare data and issue SRQ when ready.
5. VISA Wait On Event Asynchronously
Waits for the SRQ to occur. Thisvi will return each event that occurs. This VISA “Session Control” is
set to Generic Event. Using this asynchronous function will allow any vi'sthat are running paralld to the
above data flow to execute while waiting for the event.
6. VISA Read Status Byte
Reads the gpib status byte after a serial poll. This MUST be done when waiting on SRQ events.
7. VISA Close
Closes the “session” to the event.
8. VISA Read
Reads the data previoudy requested from the instrument (if necessary).
9. VISA Disable Events
Tells VISA to stop keeping track of specified events. Allows VISA to deallocate resources.
10. VISA Close
Closes the session opened to the GPIB Device.

NOTE: Another VI, Wait For RQS, incorporates steps 5,6 and 7 into one V1. For your application you
may choose to use Wait for RQS.vi instead of what is depicted here.

11

Example C

/**/

/* This example shows how to set up an asynchronous callback function
/* that is called when an asynchronous input/output operation completes.
/* The code uses VISA functions and sets a flag in the callback for the

/* completion of an asynchronous read from a GPIB device to break out of
/* aloop.

/* Theflow of the codeis asfollows:

/* Prototype the handler

/* Definethe handler function

/* Open A Session To The Visa Resource Manager

/* Open a Session to a GPIB Device

/* Ingtall A Handler For Asynchronous 1O Completion Events

/* Enable Asynchronous 10 Completion Events

/* Write A Command To The Instrument

/* Call The Asynchronous Read Command

/* Start A Loop That Can Only Be Broken By A Handler Flag Or Timeout
/* Perform any necessary operations on the data

/* Disable Asynchronous I/O Completion Events

/* Close The Instrument Session

/* Close The Resource Manager Session

/**/

#include <userint.h>
#include <utility.h>

#include<ans_c.h>
#include <visa.h>

gatic Viulnt32 writecount = 30;

satic Viulnt32 readcount = 30;

static ViBoolean stopflag = VI_FALSE;
satic Viulnt16 tcount;

satic Viulnt32 rcount;

static ViJdobld job;

static ViChar data[1028];

satic ViAddr uhandle;

satic ViStatus status;

gatic ViSession ingt, dfltRM;

/I Prototype for the handler for asynchronousi/o completion
ViStatus_VI_FUNCH Ahandler(ViSession vi, ViEventType etype, ViEvent event, ViAddr userHandle);

ﬁ

* The handler function. The instrument session, the type of event, and a

* handle to the event are passed to the function along with a user handle

* which isbasically alabd that could be used to reference the handler.

* The only thing done in the handler isto set aflag that allows the

* program to finish. Thisisthe most smple of the operations possible

* in an event handler for demonstation. Operations that occur in an event

* handler should be limited to quick operations. Nofilei/o or screen

* updates are recommended because an event handle should take very little

12

* time to execute.
*/

ViStatus_VI_FUNC Ahandler(ViSession vi, ViEventType etype, ViEvent event, ViAddr userHandle)
{

stopflag = VI_TRUE;

return VI_SUCCESS,

int main (int arge, char *argv[])
{
/*
* First we open a session to the VISA resource manager. We are
* returned a handle to the resource manager session that we must
* useto open sessions to specific instruments.
*/

status = viOpenDefaultRM (& dfltRM);

if (status< VI_SUCCESS)

{
printf("The session to the resource manager could not be opened”);
exit (EXIT_SUCCESS);

}

/*

* Next we use the resource manager handleto open asessontoa
* GPIB instrument at device 2. A handletothissession is

* returned in the handleinst.

*/

status = viOpen (dfltRM, "GPIB::2::INSTR", VI_NULL, VI_NULL, &inst);

if (status< VI_SUCCESS)

{
printf("The session to the instrument could not be opened");
viClose (dfltRM);
exit (EXIT_SUCCESS);

}

/*

* Now weinstall the handler for asynchronous 1/O compl etion events.
* We must pass the handler our instrument session, the type of

* event to handle, the handler function name and a user handle

* which isnot used often but acts as a handle to the handler

* function.

gtatus = vilnstallHandler (inst, VI_EVENT_1O_COMPLETION, Ahandler, uhandle);

if (status< VI_SUCCESS)

{
printf("The handler did not successfully install™);
viClose (inst);
viClose (dfltRM);

13

exit (EXIT_SUCCESS);

/* Now we must actually enable the 1/0 compl etion event so that our
* handler will detect the events. Note one of the parametersis
* VI_HNDLR indication that we want the eventsto be handled by
* an asynchronous callback. The alternate mechanism for handling
* eventsisto queue them and read events off of the queue when
* ever you want to check them in your program.

*/
status = viEnableEvent (inst, VI_EVENT_1O_COMPLETION, VI_HNDLR,
VI_NULL);
if (status< VI_SUCCESS)
{
printf("The event was not successfully enabled");
viClose (inst);
viClose (dfltRM);
exit (EXIT_SUCCESS);
}

/*
* Now the VISA write command is used to send arequest to the
* |nstrument to generate a Sne wave.
*/

dtatus = viWrite (inst, "command string”, writecount, &rcount);

if (status< VI_SUCCESS)

{
printf("The command was not successfully sent™);
viClose (inst);
viClose (dfltRM);
exit (EXIT_SUCCESS);
}

* Next the asynchronous read command is called to read back the

* datafrom theinstrument. Immediately after thisis called

* the program goesinto aloop which will terminate

* on an I/O completion event triggering the asynchronous callback.

* or after thirty seconds pass. Note that the asynchronous read command
* returnsajobid that is a handle to the asynchronous command.

* We can use this handle to terminate the read if too much time has passed.

status = viReadAsync (ingt, data, readcount, & jab);
while(!stopflag & & tcount < 30)

tcount++;
Delay(1);

14

printf("%i seconds have passed\n”, tcount);
}

/*
* |f the asynchronous callback was called and the flag was set
* we print out the data read back otherwise we terminate the
* asynchronous job.

*/

if (stopflag)

{

/Iperform any necessary operation on the data

}

ese

{
gtatus = viTerminate (inst, VI_NULL, job);
printf("The asynchronous read did not complete”);

}

/* Now we should disable the previoudly enabled event for completeness */
status = viDisableEvent (ingt, VI_EVENT_IO_COMPLETION, VI_HNDLR);

if (status< VI_SUCCESS)

{
printf("There was a error disabling the event”);
viClose (inst);
viClose (dfltRM);
exit (EXIT_SUCCESS);
}
/*

* Now we close the instrument session and the resource manager
* gsession to free up resources.
*/

status = viClose(ingt);
status = viClose(dfltRM)+status;

if (status< VI_SUCCESS)
{

}

return O;

printf("Error closing one of the sessions\n);

15

