
Paradigm C++ Quick Start Guide

Version 5.0

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 2000 Paradigm Systems. All rights reserved.

Paradigm C++™ is a trademark of Paradigm Systems. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Version 5.0

July 26, 2000

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road

Suite 2214
Endwell, NY 13760

USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, contact our technical support team via the Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm's SurvivalPak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (607) 748-5966 to purchase this protection today.

Contents 3

Table of Contents

Chapter 1 Getting started
Starting Paradigm C++...5

The Paradigm C++ menu system............................6
The Paradigm C++ IDE SpeedBar7

Using SpeedMenus...7
Using the Edit window...8

Creating a new file..8
Navigating your source files...................................9
Working beyond the Edit window..........................9

Working with projects..10
Creating an embedded application........................11

Configuring the remote connection..........................13
Stand-alone debugging ...13

Debugging with Paradigm C++14
Debugger SpeedButtons15

Customizing Paradigm C++.....................................16

Configuring the Paradigm C++ editor17
Syntax highlighting...18
Customizing the SpeedBars19
Setting Paradigm C++ preferences21
Saving your Paradigm C++ settings......................21

Using help in Paradigm C++22
Online help organization.......................................22
Getting help in Paradigm C++22

Getting context-sensitive help23
Accessing and using contents screens23
Using the index..23
Searching for keywords.....................................23
Help SpeedMenus ..24
Contacting Paradigm..24

Index...25

Paradigm C++ Quick Start Guide4

Chapter 1, Getting started 5

C h a p t e r

1

 Getting started

Welcome to Paradigm C++, a state-of-the-art integrated development environment (IDE)
for creating x86 real and protected mode embedded system applications in C, C++, and
assembly language. With the Paradigm C++ IDE, you can create, debug, and deploy real-
time embedded system applications without resorting to the use of external tools. If you
are used to running separate editor, debugger, make, and other tools to get a job done,
then you are in for a real treat with Paradigm C++.

To help you get familiar with the all the powerful capabilities of the Paradigm C++ IDE,
this guide offers an overview of the key technologies that work for you in Paradigm C++:

l Starting Paradigm C++
l Using SpeedMenus
l Using the Edit Window
l Working with projects
l Configuring the remote connection
l Debugging with Paradigm C++
l Customizing Paradigm C++
l Using help in Paradigm C++

At first, Paradigm C++ may take some getting used to since it breaks the old-style
embedded system development metaphor of separate edit, compile, and debug tools, and
instead tracks the way modern applications are generated. Paradigm C++ includes many
powerful features you may not be familiar with, so it pays to explore its full potential
before you jump headfirst into a new project. Take a look at the material we provide here
and use it as the basis for creating and modifying your own projects.

Starting Paradigm C++

Installation instructions launch automatically from the Paradigm C++ CD. After following
the instructions, exit the install screen. The Start menu will contain a program item titled
Paradigm C++. Use the program item to launch Paradigm C++.

Figure 1-1, page 1-6 shows how Paradigm C++ looks after loading the DEMO.IDE
project, opening DEMO.C, and building the application. The key features to note are the
Menu Bar offering access to the various Paradigm C++ tools, the SpeedBar displaying
context-sensitive shortcuts to relevant operations such as debugging and browsing, and
the Status Bar at the very bottom with contains up-to-the minute information of the status
of Paradigm C++. Filling the remainder of the window are the Edit, Project, Message and
other views, where the real work of developing an embedded application will take place.

Command-line
diehards need
not despair, a

complete set of
command tools
and make utility
is included with
Paradigm C++.

Or select
INSTALL.EXE

from the
CD-ROM drive.

For optimum
performance,

Paradigm C++
requires a

Pentium 120,
Windows 95/NT,
and 50MB hard

disk space.

Paradigm C++ Quick Start Guide6

Paradigm C++ IDE screenshot

The Paradigm C++menu system

The following table describes the menu options on the Paradigm C++ Menu Bar.

Menu item Command descriptions

File Commands to open, save, and print files. Also includes the Paradigm C++ exit command
along with a list of recently accessed files.

Edit Clipboard command and commands for undoing and redoing operations on edit buffers.
Search Commands for searching and replacing in edit buffers, files, or the current project, browsing

symbols, locating functions, and reviewing error messages generated by the programming
tools.

View Commands to open the Project Manager, Message window, and Browser. Also contains
commands to open the integrated debugger views during a debugging session.

Project Commands to open, close, and build or make a project.
Script Provides commands to run and test scripts to automate Paradigm C++. cScript is a powerful

Paradigm C++ feature that allows you to automate and integrate tools into Paradigm C++.
Tool Commands to launch any external programming tools from Paradigm C++.

Figure 1-1

Table 1-1
Paradigm C++

global menus

Chapter 1, Getting started 7

Debug Commands to run your project under control of the Paradigm C++ integrated debugger.
SCCS Source code control system integration commands. This is an optional menu that is present

when a source code control add-in is installed.
Options Paradigm C++ customization and project configuration commands. Here is where you can

completely tailor Paradigm C++ to work as you do.
Window Paradigm C++ window management commands give you complete control to navigate

between windows and close or minimize selected windows.
Help Commands to access the Paradigm C++ online help are included here. Paradigm C++

includes extensive online help covering all of Paradigm C++, from the IDE operation to the
details of the compiler run-time libraries.

Because Paradigm C++ is fully extensible by the end-user, there may be other entries on
the menu bar from version control tools, real-time operating systems, and other third-
party tools. With just a single line of Paradigm Scripting Language (cScript) code, you
can have your favorite commands displayed here to use whenever you need them.

The Paradigm C++ IDE SpeedBar

The SpeedBar (located under the main menu) has buttons that give quick access to menu
commands that relate to the area of Paradigm C++ you're working in. For example, if
you're editing code, the SpeedBar contains cut and paste commands, file save commands,
and so on, as well as commands to build and debug. When the Project window has focus,
the SpeedBar has buttons that pertain to projects, such as commands for adding project
nodes and browsing option settings.

Paradigm C++ IDE SpeedBar example

The Status Bar at the bottom of Paradigm C++ contains "flyby" help hints; when the
cursor is over a button, the Status Bar describes the button command. You can configure
the flyby hints and other SpeedBar options as described in “Customizing the SpeedBars,”
page 19. See Figure 1-7, page 1-16 for a description of the above Paradigm C++
SpeedButtons available during a debug session.

Using SpeedMenus

Right-clicking (clicking the right mouse button) accesses the Paradigm C++
SpeedMenus. SpeedMenus contain commands that are context-sensitive to the area of the
program you're working in. For example, the SpeedMenu for the Edit window contains
commands that are related to the editor. In the Project Manager, the SpeedMenus contain
commands to help you with managing your project.

To get a feel for SpeedMenus, try the following:
 1. From the Paradigm C++ Menu Bar, choose Project|Open project, then select the

project file DEMO.IDE in the PARADIGM\EXAMPLES\REAL\DEMO directory.
 2. Double-click the DEMO.C node in the Project window to load the file in an Edit

window so changes can be made.
 3. Move the cursor to the embedded.h header file reference by clicking on the file name in the

source code.

More information
about using

cScript is
available in the

online Help.

Figure 1-2

If you installed
Paradigm C++ in

a different
directory, adjust

the paths used in
this guide.

Paradigm C++ Quick Start Guide8

 4. Right-click to open the Edit window SpeedMenu, then choose Open Source to open
an Edit window that contains this header file. You can do this even quicker using the
by right-clicking anywhere in the DEMO.C Edit window and selecting the Include
command. Paradigm C++ will instantly parse the file and extract all include file
references in the buffer. Just select the desired include file and you are instantly there
to begin making changes.

In addition to right-clicking, Paradigm C++ SpeedMenus can be accessed at any time by
pressing Alt-F10.

Using the Edit window

Edit windows contain the Paradigm C++ editor, which you can use to create and edit your
program code. When you're editing a file, the Paradigm C++ status bar displays the
following information about the file that you are editing:

l The line number and character position of the cursor. For example, if the cursor is on
the first line and first character of an Edit window, you'll see 1:1 in the Status Bar. If
the cursor is on line 68 and character 23, you'll see 68:23.

l The edit mode: insert or overwrite. Press Insert to toggle whether your text additions
overwrite existing characters or insert new ones into the file.

l The file's save status. The word Modified appears if you've made changes to the file
in the active Edit window, and you have not yet saved your edits or changes.

The Paradigm C++ editor contains many powerful features to help you enter and modify
your program code. For example, you can undo multiple edits by choosing Edit|Undo or
pressing Alt-Backspace. You can also open multiple Edit windows; tile the windows as
you wish; subdivide the window into different Edit panes; and cut, copy, and paste text
between any open files. Paradigm C++ is supplied with four editor emulations and if
these don't suffice, you can create your own editor from any of the supplied editors.

Although this chapter provides a brief introduction to the editor, complete details on how
to use and customize the editor can be found in the online Help. Choose Help|Contents
and double-click Paradigm C++ User's Guide. The Editor is discussed within the
Integrated Development Environment (IDE) book topics.

Creating a new file

To introduce you to the editor, step through the following instructions to add a new source
file to a sample embedded application.
 1. If not already open, File|Open the DEMO.IDE project in

PARADIGM\EXAMPLES\REAL\DEMO.

 2. From the Paradigm C++ Menu Bar, choose File|New|Text Edit to open a new Edit
window with an empty file.

By default, Paradigm C++ names new files NONAMExx.CPP, where xx is a number
that is incremented with each new file opened. Don't worry about the filename for
now, you'll be prompted to change it when you save the file.

 3. In the Edit window, type the following C++ code to create a simple embedded
program.

+

+

Chapter 1, Getting started 9

#include <stdio.h>

char buffer[128] ;

void main(void)
{
 unsigned passcount = 0 ;

 char* format = “%05u Welcome to ParadigmC++!\n” ;
 for (;;) {
 sprintf(buffer, format, passcount) ;
 passcount++ ;
 }
}

 4. Choose File|Save, and save your new file with the file name TEST.C.

Although we created the file, it is not yet part of our Paradigm C++ project. Later, in
“Creating an embedded application,” page 11, we will show you how to add this file to
the project where it will get built with other source files in the project.

Navigating your source files

Once you have some text in the Edit window, you can navigate around your source code.
Paradigm C++ utilizes instant-parsing technology to scan the current Edit window and
extract information about functions, structures and classes, enumerations, and include
files. In small files, source code navigation is possible by scrolling the Edit window, in
large files and multi-file projects, it really isn't possible.

To really see the parsing technology in action, try the following test. Using the file
TEST.C that was just created, right-click in the window and select the Functions - only
'main()' should appear at this time.

Now add a new function to the file, such as
int test(int x, int y)
{
 return x + y ;
}

Now right-click in the window and select the Functions again and see that both main()
and test() are in the list of functions in the file. No compiling, just instant access to your
source code definitions to make it easy to navigate to any function, class or include file in
the current Edit window.

Working beyond the Edit window

The Paradigm C++ Finder, found under the Search menu, can do much more to help with
the software development process. The Finder provides the ability to search within a file,
a project, or the entire disk drive for any regular expression. This is an incredibly
powerful capability when you need to find text or make changes across one or many files
in your project or on your disk.

Paradigm C++ Quick Start Guide10

Paradigm C++ Finder

No matter what your needs, Paradigm C++ has the tools you need to manage and maintain
your project files. While the Finder works on any source file, the browser adds even
more power by using compiled code to create a database that can be utilized to find
where a function is defined and all the instances that it is used in. More information about
the browser is available in the online Help index under "browser" or see Chapter 4,
“Browsing through your code,” of the Paradigm C++ Reference Manual.

Working with projects

After you install Paradigm C++, you'll want to make sure the program is correctly set up;
the details of the compiler and the Paradigm C++ IDE can wait until later. The best way
to test your setup is to compile, build and load the sample applications included with
Paradigm C++.

Paradigm C++ uses projects to help manage your code and make sure any source code
changes are reflected in the other files that depend on them. As an application grows in
size and complexity, it becomes dependent on various intermediate files. Often, source
files need to be compiled with different compilers and different sets of compiler options.
Even a simple embedded application can have multiple C/C++ source files, with each
file type requiring different compilers and different compiler settings.

Figure 1-3

Chapter 1, Getting started 11

The Project Manager Project window

As your project complexity increases, the need increases for a way to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source files to produce a single target file. While
target files are usually a .AXE or .HEX file, source files cover a broader range of file
types, including .C, .CPP, .ASM, and other files. Additionally, many source files have
autodependent files (files that are automatically included by the source), such as C header
files. In larger projects, you are likely to find several targets with scores of sources.

To get the most from Paradigm C++, we need to create a project so the files and build
options are saved, just as they would be in a more traditional makefile.

Creating an embedded application

You can become familiar with the Project Manager and the C/C++ compiler by following
these steps to create a simple embedded application:
 1. From the Paradigm C++ Menu Bar, choose File|New|Project…, then set the following

options in the New Target dialog box:
l Type the path and name for your new project in the Project Path and Name input

box. In this case, type:
\paradigm\examples\demo\mydemo.ide

l Type the target name you want to use. Because you can have more than one target
in the project, you can have different names for targets that share files and options.
In this case, type:
test

l In the Target Type list box, click Paradigm Application [.AXE]. This selection
will create a project where the source modules are compiled, assembled, linked
and located to generate .AXE files for debugging or .HEX and .BIN files for
placing within flash or EPROM devices.

l If you like, select the desired platform and memory model you want for your
application. You can also enable the use of floating point arithmetic or other
options that depend on the selected Target Type.

l If you like, choose a target connection from the list of available remote connection
interfaces.

Figure 1-4

If the directory
doesn't exist,

Paradigm C++
creates the

directory for you.

Paradigm C++ Quick Start Guide12

The New Target dialog box should now resemble the one shown in Figure 1-5, page
1-12.

New Target dialog box

 2. Choose OK to close the New Target dialog box.

 3. The Project window opens and displays the target and dependencies of the project
you just created.

The following are definitions for the nodes within this newly created project:

TEST.AXE This node is the final target node that is generated during the locate
phase of the build and includes the absolute code for debugging or
burning into flash or EPROM.

TEST.CFG This is the Paradigm LOCATE configuration file that is used to
generate the TEST.AXE output file. This file contains the description
of the target system address space as well as the build instructions for
placing the program code and data at addresses that you specify.

TEST.ROM This node is generated by the Paradigm C++ linker and is also the
point in the build process in which a .MAP file is generated for use in
the locate phase.

Figure 1-5

Chapter 1, Getting started 13

TEST.C This node references the files TEST.C, the file that you created earlier
in the chapter (if you haven't already done so, create this file by
following the instructions listed in the section, “Creating a new file”
on page 8).

 4. Build the application by selecting the .AXE node and right-click to bring up the local
options and select 'Build node'. Because Paradigm C++ has a built-in Project
Manager, it always knows when the project is out-of date and needs to be rebuilt so
there is no need to explicitly do this. We could have also selected the Project|Make
all or the Project|Build all commands from the SpeedBar or from the Project menu.

If you correctly followed all the steps in this section, the application builds without
errors. If the compiler reports errors or warnings during the compile, retrace the steps in
this section to ensure you correctly followed the steps. When the program compiles
without errors, the Project Manager creates an executable program called TEST.AXE
and places it in the directory you selected when the project was created.

This is only a small fraction of the information on working with projects. See "projects"
in the online Help index for complete details on managing the build process using
Paradigm C++ projects or see Chapter 2 “Managing projects,” of the Paradigm C++
Reference Manual.

Configuring the remote connection

Paradigm C++ can only debug when a target such as PDREMOTE/ROM or an in-circuit
emulator is connected. Configuring the remote connection gives Paradigm C++ the
information it needs about your target to begin a debugging session. To configure the
remote connection:

 1. Select the TEST.AXE node from the project view of the Project Manager.
 2. Right-click to see local menu options for the TEST.AXE node.
 3. Select TargetExpert. The dialog contains a pull down menu for Target Connection.
 4. Select the drop down menu to see a list of available remote connection interfaces and

select the desired remote connection interface.
 5. Press the Modify connection settings button to make specific changes to the remote

interface settings.

Once the remote connection settings are set up, click OK to close the remote connection
dialog. You are now ready to start debugging. Double-click the TEST.AXE node to
rebuild the application (if needed) and download the application to the target.

The debugger sets a software breakpoint at the label main in the application. If you would
rather start at the reset vector or run to a different place in the application, then select
Options|Environment|Debugger|Debugger Behavior and delete main, or add the function
name, to Run to on startup.

Stand-alone debugging

To configure the remote connection to do stand-alone debugging without the use of
Project Manager,

 1. Close any demo projects that may be open (Project|Close project).
 2. Select Debug|Load, and Browse or type in the name of the .AXE (or .HEX) file for

remote download, for example,

You can access
the Master Index

from within any
online Help topic
by right-clicking.

A target
connection must

be specified to
begin debugging.

+

Paradigm C++ Quick Start Guide14

\paradigm\examples\demo\test.axe

 3. Choose the desired remote connection interface.
 4. Press the Modify settings button to change any specific remote connection settings for

the selected interface.
 5. Select OK to load the application file and start debugging without the use of the

Project Manager.

Again, the debugger sets a software breakpoint at the label main in the application. If
you would rather start at the reset vector or run to a different place in the application,
then select Options|Environment|Debugger|Debugger Behavior and delete main, or
add the function name, to Run to on startup.

 6. When you would like to exit stand-alone debugging mode, Select Debug|Terminate
debug session or hit Ctrl-F2.

Debugging with Paradigm C++

For a demonstration of debugging in Paradigm C++, open the DEMO.IDE project in
PARADIGM\EXAMPLES\REAL\DEMO as you did in “Creating a new file,” page 8 and
double-click the DEMO.C node in the Project window. Right-click the DEMO.AXE node
in the Project window and and select TargetExpert to ensure that the Target Connection is
set to the desired remote connection. Then simply double-click the DEMO.AXE node in
the Project window to download the application to your target. If the debugger option to
execute to main(), found under Options|Environment|Debugger|Debugger Behavior, is
enabled, the debugging session will look like Figure 1-6, page 1-15.

At this point the Debug menu commands and SpeedBar will come alive so you can
inspect program data, view the processor registers, or access target peripherals. Right-
clicking in the Edit window will bring up the debugger SpeedMenu for quick access to
debugging commands.

You can step through the program and test until you find a bug that needs fixing. Use the
Statement step over, step into, or step out of SpeedButtons located beneath the Menu bar
to begin debugging. You could use the Run SpeedButton but the application won't stop
unless you have set a breakpoint somewhere in the program. You can also use the Run to
here button to execute to a particular source line that the cursor is on. See Figure 1-7,
page 1-16 for a description of Paradigm C++ SpeedButtons available during a debug
session.

When you find a problem, you might notice that there is no difference between editor
windows and debugger windows. This is a big improvement over traditional tools since
you can fix a bug right away without exiting the debugger. If you make a change, you can
either continue the debugging session or you can rebuild the application and test the
change - all without losing your place! This is where Paradigm C++ excels at making the
most of your development time.

 If you have
multiple targets,
you can select

the target
connector from

the local menu of
a target node in

the Project view.

Step over/into

Run/Run to

Chapter 1, Getting started 15

Paradigm C++ debugging session

Debugger SpeedButtons

 This section will familiarize you with the Paradigm C++ SpeedButtons used in a
debugging session.

Figure 1-6

Paradigm C++ Quick Start Guide16

Paradigm C++ SpeedButtons

In Paradigm C++, click the What's This? SpeedButton and then a SpeedButton of interest
to receive a help description of that button. The Paradigm C++ debugger is covered in
complete detail in Chapter 5 “Using the integrated debugger,” of the Paradigm C++
Reference Manual. We have covered just the basics here. Plan on spending some time in
Chapter 5 or see "integrated debugger" in the online Help index for more assistance on
the Paradigm C++ integrated debugger.

Customizing Paradigm C++

You can configure Paradigm C++ in many ways to create a customized environment that
meets your programming needs. For example, you can have Paradigm C++ do tasks
automatically (such as saving backups of your files in the Editor windows) or handle
special events.

The Environment Options dialog box (accessed with the Options|Environment command)
lets you configure the different elements and windows of Paradigm C++. Once you've
customized Paradigm C++ to your liking, choose Options|Save, check the options you
want to save, then choose OK; Paradigm C++ saves your environment settings to a file
called PCCONFIG.PCW. By default, the file is saved to the BIN directory in your
Paradigm C++ directory tree. This default directory is specified by the
DefaultDesktopDir field of your PCW5.INI file, which is located in your Windows
directory.

The Environment Options dialog box displays a list of customizable topics on the left and
each topic's configurable options on the right. Some topics contain subtopics, indicated
by a + next to the topic. For example, the Editor topic has subtopics called Options, File,
and Display. To view a topic's subtopics, click the + sign next to the topic; its subtopics
appear under it and the + turns to a - (you can then click the - to collapse the list of
subtopics). Topics without subtopics appear with a dot next to their name.

Figure 1-7

Chapter 1, Getting started 17

Environment Options dialog box

This section discusses the following Environment options topics:

l Configuring the Paradigm C++ editor
l Selecting the Syntax highlighting options
l Customizing the SpeedBars
l Setting the Paradigm C++ preferences
l Saving your Paradigm C++ settings

Although this chapter doesn't offer a complete reference to the many selections in the
Environment Options dialog box, a complete reference is available by clicking the Help
button.

Configuring the Paradigm C++ editor

You can configure the editor so that it looks and behaves like other editors such as Brief
and Epsilon. The Paradigm C++ editor uses keyboard mapping files (.KBD files) that set
the keyboard shortcuts for the editor and the other windows in Paradigm C++. You can
modify this behavior using ObjectScripting. For more information, see "ObjectScripting"
the online Help index.

Figure 1-8

+

Paradigm C++ Quick Start Guide18

Syntax highlighting

Syntax highlighting lets you define a color and font attribute (such as bold) for certain
elements of code. For example, you could display comments in blue and strings in red.
Syntax highlighting is on by default.

Syntax highlighting works on files whose extensions are listed in the Syntax Extensions
list (by default, these files are .C, .CPP, .H, and .HPP). You can add or delete any
extension from this list, but be sure to separate extensions with semicolons.

The Syntax highlighting section displays the default color scheme and four predefined
color settings. To use a predefined color scheme,

 1. Choose Options|Environment|Syntax highlighting.
 2. Choose one of the four predefined color schemes (Defaults, Classic, Twilight, or

Ocean) by choosing the Color SpeedSettings; the sample code changes to the color
scheme you select.

Environment Options Syntax Highlighting dialog

To customize the syntax highlighting colors,
 1. Choose Options|Environment, then select the Syntax highlighting topic.

Figure 1-9

Chapter 1, Getting started 19

 2. Select a predefined color scheme to use as a base for your customized colors.
 3. Choose the Customize topic listed under the Syntax highlighting topic. Elements and

sample code appear on the right of the Environment Options dialog box.
 4. Select an element you want to modify from the list of elements (for example, choose

Comment), or click the element in the sample code (this selects the name in the
Element list). You might need to scroll the sample code to view more elements.

 5. Select a color for the element. The element color in the sample code reflects your
selection. Use the left mouse button to select a foreground color for the element (FG
appears in the color). Use the right mouse button to select a background color (BG
appears in the color). IF FB appears in the color, the color is used as both a
background and a foreground color.

 6. If you want, choose an Attribute (for example, bold).
 7. You can check Default FG (foreground) or BG (background) to use the Windows

default colors for an element.
 8. Repeat steps 2-4 for the elements you want to modify.

To turn off syntax highlighting, choose Options|Environment|Syntax highlighting, then
uncheck Use Syntax highlighting.

Customizing the SpeedBars

Paradigm C++ uses context-sensitive SpeedBars for all its windows, including Edit,
Browser, Debugger, Project Manager, Message, and Desktop windows. When a window
has focus, the corresponding SpeedBar appears just below the Menu Bar. Using the
Environment Options dialog box, you can customize the SpeedBars for each window so
that they include only the buttons you want.

To add or delete buttons from the SpeedBars,

 1. Choose Options|Environment from the Paradigm C++ Menu Bar.
 2. Choose the SpeedBar topic on the left. The right side of the dialog box displays

general options for all SpeedBars.

The options here let you specify if you want to hide or view the SpeedBar, where you
want the SpeedBar to appear (on the top or bottom of the Paradigm C++ window),
and if you want to use the Flyby Help Hints. If you check Use Flyby Help Hints,
Paradigm C++ displays descriptions of the SpeedButtons on the status line when you
pass the mouse pointer over a button. If you leave this box unchecked, the hints show
on the status line only when you click a SpeedButton.

 3. Choose the Customize topic listed under the SpeedBar topic to customize the
SpeedBar for a particular window.

Paradigm C++ Quick Start Guide20

Environment Options SpeedBar customizing dialog

 4. In the Window dialog box, choose the specific window (Edit, Browser, Debugger,
Project, Message, or the Paradigm C++ Desktop) whose SpeedBar you want to
customize.

The Available Buttons list box displays all the unused buttons that you can add to a
particular window's SpeedBar (each button has a name next to it that describes the
button's function.). The Active Buttons list displays the buttons that are currently
contained in the selected window's SpeedBar.

l To add a button to a SpeedBar, double-click the button icon in the Available
Buttons list, or select it and click the right-pointing arrow. Paradigm C++ places
the button in front of the selected button in the Active Buttons list.

l To remove a button from a SpeedBar, double-click the button icon in the Active
Buttons list, or select it and click the left-pointing arrow. The button moves to the
Available Buttons list.

l To reorder the button positions for a SpeedBar, select a button in the Active
Buttons list, and use the up and down arrows to move the button within the list.
The top button in the list appears on the left side of the SpeedBar and the last
button in the list appears on the right side of the SpeedBar.

Figure 1-10

Chapter 1, Getting started 21

l To put separator spaces between buttons on the SpeedBar, select a button from
the Active Buttons list, and then click the Separator button. The separator is added
before the selected button.

You can also make all SpeedBars identical by selecting a SpeedBar in the Window list,
then pressing the Copy Layout button. A dialog box appears in which you check all the
SpeedBars you want to make identical to the selected Speedbar. For example, if you first
choose the Editor SpeedBar and then click Copy Layout, the dialog box appears with
Editor dimmed. If you then check Project and Message, those SpeedBars will be exactly
the same as the Editor SpeedBar.

You can restore any SpeedBar to its original defaults by selecting the SpeedBar in the
Windows list, then clicking the Restore Layout button.

Setting Paradigm C++ preferences

The Preferences command lets you customize which of the Paradigm C++ settings you
want automatically saved and how you want some Paradigm C++ windows to work.

To set preferences,
 1. Choose Options|Environment|Preferences.
 2. Check and uncheck the options you want, then choose OK. For an explanation of each

option, select the option and hit F1 to access the online Help for that option.

Saving your Paradigm C++ settings

Paradigm C++ automatically saves information when you exit Paradigm C++, use a
transfer tool, build or make a project, run the integrated debugger, or close or open a
project. You can control which areas of Paradigm C++ get saved from the Preferences
topic in the Environment Options dialog box (choose Options|Environment from the main
menu).

If you want to save your settings manually, you can do so as follows:
 1. Choose Options|Save.

 2. Check Environment to save the settings from the Editor, Syntax highlighting,
SpeedBar , Browser, and Preferences sections of the Environment Options dialog
box. These settings are saved in a file called PCCONFIG.PCW.

Figure 1-11
Save options

dialog

Paradigm C++ Quick Start Guide22

 3. Check Desktop to save information about open windows and their positions. This
information is saved to a file called <prjname>.DSW. If you don't have a project
open, the information is saved to a file called PCWDEF.DSW.

 4. Check Project to save the changes to your project (.IDE) file, including build options
and node attributes.

Using help in Paradigm C++

Paradigm C++ provides complete online documentation through the Help system. Using
Help is a convenient way to get information about language features, compiler options,
and any tasks you need to perform while developing applications in Paradigm C++.

Online help organization

 The Help system is organized into Help files that include the following documentation:

Help file Description

Using Online Help Features of Paradigm C++ Help (OPENHELP.HLP)
Paradigm C++ Class Libraries Guide Programming and reference material (CLASSLIB.HLP)
Paradigm C++ Programmer's Guide Programming tips and language details (PCPP.HLP)
Paradigm C++ User's Guide Paradigm C++ tasks, projects, tools (PCW.HLP)
Error Messages and Warnings Paradigm C++ Error message descriptions (PCERRMSG.HLP)
Tools and Utilities Command-line tools (PCTOOLS.HLP)
ObjectScripting Guide Customizing with scripts in Paradigm C++ (SCRIPT.HLP)
Paradigm LOCATE Reference Reference material for Paradigm LOCATE (LOCATE.HLP)
Paradigm LOCATE Error Messages Paradigm LOCATE Error messages (LOCERR.HLP)
PDREMOTE/ROM Help PDREMOTE/ROM Tutorial help (PDREM.HLP)
Paradigm Assembler Help Assembler options and operators reference (PASM.HLP)
Paradigm C++ SCCS Integration Source code control system features (SCCS.HLP)
Run-time Library Source Code Building and customizing tips (RUNTIME.HLP)
PDREMOTE/ROM Source Code Building and customizing tips (PDREMSRC.HLP)
Paradigm OMFCVT Guide Features of Paradigm OMFCVT (OMF.HLP)

Some of these files may only be available if you have optional components installed in
the Paradigm C++ IDE. Additional files may be available.

Getting help in Paradigm C++

In Paradigm C++, you can get Help in the following ways:

l Context-Sensitive Help (F1)
l Contents Screens
l Index
l Keyword Search (F1 or Ctrl+F1 in the Edit Window)
l SpeedMenus (in the Help window)
l Contacting Paradigm

Table 1-2
Help files

Chapter 1, Getting started 23

Getting context-sensitive help
To access context-sensitive Help for items in Paradigm C++:

 1. Select the element you want help on (menu, menu command, an item in a dialog box).
 2. Press F1 or Ctrl+F1.

Help buttons are available on many dialog boxes and for most error messages.

Click Help to view information about:

l The entire dialog box
l An error message
l The current group of topics in an Options settings dialog box

Accessing and using contents screens
Each Help Contents offers an entry into a Help system installed with Paradigm C++.
From the Contents, select the category of information that best suits your needs, then click
on it.

l To display the Master Contents screen, choose Contents on the Help menu in
Paradigm C++.

l To access the Help Contents from within a topic in the active Help file, click the
Contents button.

l To access the Help Contents screen of a different Help file installed with Paradigm
C++, right-click and select the name of the Help file you want to view.

l To access the Contents of all available Help files, click the Book Shelf button from
within the topic of a Help file. Shortcuts to help files are also listed under the Start
menu in Programs|Paradigm C++|Help.

You can expand books that appear on the Contents, or jump directly to a topic. To view a
topic, click on it.

You can print several topics at once by clicking a book on the Contents and then clicking
Print.

Using the index
In Help, click the Index tab to view a list of index entries. Either type the word you're
looking for or scroll through the list.

Searching for keywords
Keyword Search gives you direct access to Help about a term in your program. To get
help on a term:

 1. In the Edit window, place the insertion point on the term you want help on.
 2. Use one of the following methods:

l Press F1 or Ctrl+F1.
l Choose Keyword Search on the Help menu.
l Choose Go To Help Topic on the Edit Window SpeedMenu.

 3. One of these events occurs:
l The topic associated with the term you selected is displayed.

To return to a
previous topic or

Help file, click the
Back button.

To return to a
previous topic or

Help file, click the
Back button.

Paradigm C++ Quick Start Guide24

l If more than one topic is available on the term for which you requested Help, the
Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

l If no Help is available for the term nearest the insertion point, the index is
displayed. You can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view the list of topics associated with the term.

Help SpeedMenus
All the Paradigm C++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Help.

The SpeedMenu also lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help file is displayed.

Contacting Paradigm
There are several ways to contact Paradigm Systems for technical assistance on Paradigm
C++.

Use the Help menu links to access the Paradigm C++ home page, newsgroups, FTP site or
to register Paradigm C++.

You can contact Paradigm directly at:

Paradigm Systems
Suite 2214
3301 Country Club Road
Endwell, NY 13760
USA

Sales: 607-748-5966
Fax: 607-748-5968
Technical Support: 800-582-0864

Ninety days of free technical support is only available to registered users of Paradigm
C++. If you haven’t yet done so, take this time to register your products under the
Paradigm C++ Help menu or online at http://www.devtools.com. Contact Paradigm to
purchase a Paradigm SurvivalPak for an additional 12 months of free technical support
and quarterly product upgrades.

+

Index 25

Index

C

context-sensitive help 22
customizing See Environment options

D

debugger 14
SpeedButtons 15
target connection 13

stand-alone 13
desktop

speedbar options 19

E

Edit window 5, 8
editor 8

options 16
Environment options 16

Editor 17
Preferences 21
SpeedBar 19
Syntax highlighting 18

F

file extensions
syntax highlighting 18

files
creating 8

Finder 9
Flyby Help Hints 19

H

Help 22
contacting Paradigm 24
context-sensitive help 23
displaying Contents 23
Help files 22

index 23
keyword searches 23
printing topics 23
SpeedMenus 24

I

installation 5

M

Menu Bar 5
command descriptions 6

Message window 5

N

New Target command 11

O

online help 22

P

Paradigm Systems, contacting 24
Project window 10
projects 10

creating 11
setting preferences 21

S

Save command 21
SpeedBar

copying 21
SpeedMenus 7
Status Bar 5, 8
syntax highlighting 18

color options 18

Paradigm C++ Quick Start Guide26

	Starting Paradigm C++
	The Paradigm C++menu system
	The Paradigm C++ IDE SpeedBar

	Using SpeedMenus
	Using the Edit window
	Creating a new file
	Navigating your source files
	Working beyond the Edit window

	Working with projects
	Creating an embedded application

	Configuring the remote connection
	Stand-alone debugging

	Debugging with Paradigm C++
	Debugger SpeedButtons

	Customizing Paradigm C++
	Configuring the Paradigm C++ editor
	Syntax highlighting
	Customizing the SpeedBars
	Setting Paradigm C++ preferences
	Saving your Paradigm C++ settings

	Using help in Paradigm C++
	Online help organization
	Getting help in Paradigm C++
	Getting context-sensitive help
	Accessing and using contents screens
	Using the index
	Searching for keywords
	Help SpeedMenus
	Contacting Paradigm

