UPC III

2. Crosstalk reduction and shielding techniques

Crosstalk reduction •Technology •Layout, driver sizing •Tolerant circuits Shielding

3. References

Crosstalk reduction: technology

There are four sides to consider to reduce the effects of crosstalk:

- Technology
- Layout, driver sizing
- Design tolerance

UPC

Crosstalk reduction: layout

Scenarios (ITRS05)

2007 2010 2013

Local wiring pitch	156	90	64	[nm]
Intermediate wiring pitch	167	90	64	
Global wiring pitch	250	135	96	
Local wiring aspect ratio	1.7	1.8	1.9	ťw
Intermediate wiring aspect ratio	1.6	1.7	1.8	
Global wiring aspect ratio	2.1	2.3	2.4	

Simple model. Not capture distributed effects. Wire resistance lumped with driver resistance.

Ratio of driver strengths

- Line width
- Distance and screening \longrightarrow decreases C_c
- Driver strength

 $au_{\scriptscriptstyle vic}$

Small influence for long interconnects

increases C_{BOT}

Crosstalk tolerant design: example

CLK = 0 transparent state, CLK = 1 latch state CLKB = nCLK

Conventional latch

CLK = 0 (CLKB=1) and D goes to 0 while the latch stores a 1. CLK and CLKB have a positive glitch, the latch can store a wrong "0"

Crosstalk tolerant latch [Rubio92]

Crosstalk reduction: length and number of aggressors

Crosstalk increases with number of aggressors, but tends to saturate with length

Arbitrary units

UPC

Crosstalk reduction: repeater insertion

Interleaved repeaters gives a further reduction

Optimization for delay and consumption

Arbitrary units

Planes are ideal conductors at zero potential

2, 4 or 6 aggressors equally distributed at both sides of the victim line

Worst case: same transition in all aggressors

UPC

Shielding: propagation delay

Worst case delay: opposite transitions in victim and aggressors (2) Typical case delay: only transition in victim line Best case delay: same transition in all lines

UPC

Shielding: delay noise

Delay noise = worst case delay – best case delay

UPC

Shielding: conclusions

Highest robustness: bus with top and bottom planes and wider spacing (at cost of lower performance)

Several basic references on crosstalk

- F. Moll, M. Roca, Interconnection Noise in VLSI Circuits, Kluwer 2004
- C.R. Paul, Analysis of Multiconductor Transmission Lines, Wiley 1994
- T. Sakurai, "Closed-Form Expressions for Interconnect Delay, Coupling and Crosstalk in VLSI's", *IEEE Transactions* on *Electron Devices*, Vol 40, No 1, January 1993, pp. 118-124
- J.A. Davis, J.D. Meindl, "Compact Distributed RLC Interconnect Models Part I: Single Line Transient, Time Delay, and Overshoot Expressions", *IEEE Transactions on Electron Devices*, Vol 47, No 11, November 2000, pp. 2068-2077.
- J.A. Davis, J.D. Meindl, "Compact Distributed RLC Interconnect Models Part II: Coupled Line Transient Expressions and Peak Crosstalk in Multilevel Networks", *IEEE Transactions on Electron Devices*, Vol 47, No 11, November 2000, pp. 2078-2087.
- A. Deutsch, G. V. Kopcsay *et al.*, "When are Transmission-Line Effects Important for On-Chip Interconnections?", *IEEE Transactions on Microwave Theory and Techniques*, Vol 45, No 10, October 1997, pp. 1836-1846
- International Technology Roadmap for Semiconductors, Edition 2005, http:// www.itrs.net
- R. Ho, K.W. Mai, M. A. Horowitz, "The Future of Wires", *Proceedings of the IEEE*, Vol 89, No 4, April 2001, pp. 490-504