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2. Crosstalk reduction and shielding
techniques

Crosstalk reduction
*Technology
eLayout, driver sizing
*Tolerant circuits

Shielding

3. References
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Crosstalk reduction: technology

There are four sides to consider to reduce the effe  cts of crosstalk:
» Technology
 Layout, driver sizing
 Design tolerance
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Crosstalk reduction: layout

Scenarios (ITRS05) 2007 2010 2013

Local wiring pitch 156 90 64
Intermediate wiring pitch 167 90 64 [n m]
Global wiring pitch 250 135 96
Local wiring aspect ratio 1.7 18 19
Intermediate wiring aspect ratio 1.6 1.7 138 t/w
Global wiring aspect ratio 21 23 24
Agg. Victim Tic
_/_ Cc Simple model. Not capture distributed effects.
NN\ _| |_ Wire resistance lumped with driver resistance.
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strengths Small influence for long interconnects
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Crosstalk tolerant design: example

CLK = 0 transparent state, CLK =1 latch state
CLKB = nCLK
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Conventional latch )

Crosstalk tolerant latch

CLK = 0 (CLKB=1) and D goes to O [Rubio92]
while the latch stores a 1. CLK and

CLKB have a positive glitch, the latch

can store a wrong “0”
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Crosstalk reduction: length and number of aggressor S

Crosstalk increases with number of aggressors, but tends to saturate with length

Arbitrary units
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Crosstalk reduction: repeater insertion

—>0 >0
—>0 >0

Insertion of repeaters decrease crosstalk

IR

Interleaved repeaters gives a further reduction

Optimization for delay and consumption
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Shielding: crosstalk peak noise

M3 plane
4 B L
O Cp I . Ce C,.
T T T T T T
T T T M plane M plane
Arbitrary units Fpx FOX FOX
Substrate Substrate Substrate

Planes are ideal conductors
at zero potential

2, 4 or 6 aggressors equally
distributed at both sides of the
victim line

Worst case: same transition
in all aggressors
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Shielding: propagation delay

Worst case delay: opposite transitions in victim and agg ressors (2)
Typical case delay: only transition in victim line
Best case delay: same transition in all lines
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Shielding: delay noise

Delay noise = worst case delay — best case delay
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Shielding: conclusions

Highest robustness: bus with top and bottom
planes and wider spacing (at cost of lower performance)
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