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2. Crosstalk reduction and shielding 
techniques

Crosstalk reduction
•Technology
•Layout, driver sizing
•Tolerant circuits

Shielding

3. References
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Crosstalk reduction: technology

There are four sides to consider to reduce the effe cts of crosstalk:
• Technology
• Layout, driver sizing
• Design tolerance
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Crosstalk reduction: layout
Scenarios (ITRS05)

Local wiring pitch
Intermediate wiring pitch
Global wiring pitch 

Local wiring aspect ratio
Intermediate wiring aspect ratio
Global wiring aspect ratio

2007  2010  2013

156 90     64
167 90     64
250     135    96

1.7     1.8     1.9
1.6     1.7     1.8
2.1     2.3     2.4
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Crosstalk tolerant design: example

Conventional latch

Crosstalk tolerant latch
[Rubio92]CLK = 0 (CLKB=1) and D goes to 0 

while the latch stores a 1. CLK and 
CLKB have a positive glitch, the latch 
can store a wrong “0” 

CLK = 0 transparent state, CLK = 1 latch state
CLKB = nCLK
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Crosstalk reduction: length and number of aggressor s

Crosstalk increases with number of aggressors, but tends to saturate with length

Arbitrary units
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Crosstalk reduction: repeater insertion

Insertion of repeaters decrease crosstalk

Interleaved repeaters gives a further reduction

Optimization for delay and consumption
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Shielding: crosstalk peak noise 

Planes are ideal conductors
at zero potential

2, 4 or 6 aggressors equally
distributed at both sides of the
victim line

Worst case: same transition 
in all aggressors

Arbitrary units
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Shielding: propagation delay 
Worst case delay: opposite transitions in victim and agg ressors (2)
Typical case delay: only transition in victim line
Best case delay: same transition in all lines
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Shielding: delay noise 

Delay noise = worst case delay – best case delay
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Shielding: conclusions 

Highest robustness: bus with top and bottom
planes and wider spacing (at cost of lower performance)
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